Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Experimental And Computational Fluid Dynamics Investigation Of Mechanisms Of Enhanced Oil Recovery Via Nanoparticle-Surfactant Solutions, Nurudeen Yekeen, Ali Masoud Ali Elakkari, Javed Akbar Khan, Muhammad Ali, Ahmed Al-Yaseri, Hussein Hoteit Apr 2023

Experimental And Computational Fluid Dynamics Investigation Of Mechanisms Of Enhanced Oil Recovery Via Nanoparticle-Surfactant Solutions, Nurudeen Yekeen, Ali Masoud Ali Elakkari, Javed Akbar Khan, Muhammad Ali, Ahmed Al-Yaseri, Hussein Hoteit

Research outputs 2022 to 2026

The enhancement in surfactant performance at downhole conditions in the presence of nanomaterials has fascinated researchers’ interest regarding the applications of nanoparticle-surfactant (NPS) fluids as novel enhanced oil recovery (EOR) techniques. However, the governing EOR mechanisms of hydrocarbon recovery using NPS solutions are not yet explicit. Pore-scale visualization experiments clarify the dominant EOR mechanisms of fluid displacement and trapped/residual oil mobilization using NPS solutions. In this study, the influence of multiwalled carbon nanotubes (MWCNTs), silicon dioxide (SiO2), and aluminum oxide (Al2O3) nanoparticles on the EOR properties of a conventional surfactant (sodium dodecyl benzene sulfonate, …


Using Nanomaterials As Excellent Immobilisation Layer For Biosensor Design, Azeez Olayiwola Idris, Seyi Philemon Akanji, Benjamin O. Orimolade, Foluke Omobola Grace Olorundare, Shohreh Azizi, Bhekie Mamba, Malik Maaza Feb 2023

Using Nanomaterials As Excellent Immobilisation Layer For Biosensor Design, Azeez Olayiwola Idris, Seyi Philemon Akanji, Benjamin O. Orimolade, Foluke Omobola Grace Olorundare, Shohreh Azizi, Bhekie Mamba, Malik Maaza

Research outputs 2022 to 2026

The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials—graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots—and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. …


Highly Stretchable And Sensitive Sbs/Gr/Cnts Fibers With Hierarchical Structure For Strain Sensors, Mengsui Liu, Yaping Sheng, Chenggang Huang, Chenggang Huang, Yanfen Zhou, Liang Jiang, Mingwei Tian, Shaojuan Chen, Stephen Jerrams, Fenglei Zhou, Jianyong Yu Jan 2023

Highly Stretchable And Sensitive Sbs/Gr/Cnts Fibers With Hierarchical Structure For Strain Sensors, Mengsui Liu, Yaping Sheng, Chenggang Huang, Chenggang Huang, Yanfen Zhou, Liang Jiang, Mingwei Tian, Shaojuan Chen, Stephen Jerrams, Fenglei Zhou, Jianyong Yu

Articles

Most of the reported flexible strain sensors can only normally sense external stretch in a quite narrow working range and with low sensitivity. In order to overcome these drawbacks, elastomeric fiber based strain sensors incorporating graphene (Gr) and carbon nanotubes (CNTs) were initially fabricated via coaxial wet spinning. The solution etching method was employed for forming a 1D@2D@1D hierarchical structure, with pores and microcracks on fibers, to reconstruct their conductive networks. The solution etched fiber based strain sensors achieved a significant improvement in obtaining a high maximum gauge factor of 1667 and capability of working over a wide strain range …


Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad Jan 2023

Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad

Dissertations, Master's Theses and Master's Reports

There is an increase in demand for new lightweight structural materials in the aerospace industry for more efficient and affordable human space travel. Polymer matrix composites (PMCs) with reinforcement material as carbon nanotubes (CNTs) have shown exceptional increase in the mechanical properties. Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. These flCNT/polymer materials are subjected to extreme pressure and temperature during curing process. Therefore there is a need to investigate the evolution of properties during the curing …