Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bio-oil

Civil and Environmental Engineering Faculty Research and Publications

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Paper Mill Sludge Biochar To Enhance Energy Recovery From Pyrolysis: A Comprehensive Evaluation And Comparison, Zhongzhe Liu, Matthew Hughes, Yiran Tong, William Kreutter, Hugo Cortes Lopez, Simcha L. Singer, Daniel Zitomer, Patrick J. Mcnamara Jan 2022

Paper Mill Sludge Biochar To Enhance Energy Recovery From Pyrolysis: A Comprehensive Evaluation And Comparison, Zhongzhe Liu, Matthew Hughes, Yiran Tong, William Kreutter, Hugo Cortes Lopez, Simcha L. Singer, Daniel Zitomer, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Bio-oil and pyrolysis gas (py-gas) are two pyrolysis products available for potential energy recovery. Crude bio-oil, however, is typically corrosive and unstable, requiring special combustion equipment or catalytic upgrading to produce drop-in-grade fuel. In contrast, py-gas is readily useable in standard equipment for energy recovery. Previous research revealed that Ca-impregnated biochar catalyst improved bio-oil to py-gas conversion. Biochar produced from paper mill sludge (p-sludge) has very high Ca content. In this study, the catalytic ability of p-sludge biochar was systematically evaluated for the first time in pyrolysis. P-sludge biochar resulted in higher py-gas yield (40 wt% of total pyrolysis products) …


Pyrolysis Of Dried Wastewater Biosolids Can Be Energy Positive, Patrick J. Mcnamara, Jon Koch, Zhongzhe Liu, Daniel Zitomer Sep 2016

Pyrolysis Of Dried Wastewater Biosolids Can Be Energy Positive, Patrick J. Mcnamara, Jon Koch, Zhongzhe Liu, Daniel Zitomer

Civil and Environmental Engineering Faculty Research and Publications

Pyrolysis is a thermal process that converts biosolids into biochar (a soil amendment), py-oil and py-gas, which can be energy sources. The objectives of this research were to determine the product yield of dried biosolids during pyrolysis and the energy requirements of pyrolysis. Bench-scale experiments revealed that temperature increases up to 500 °C substantially decreased the fraction of biochar and increased the fraction of py-oil. Py-gas yield increased above 500 °C. The energy required for pyrolysis was approximately 5-fold less than the energy required to dry biosolids (depending on biosolids moisture content), indicating that, if a utility already uses energy …