Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Effects Of Magnetite Particle Morphology On Adsorption Of Copper Ions From Aqueous Solutions, Alisa Hashley May 2024

Effects Of Magnetite Particle Morphology On Adsorption Of Copper Ions From Aqueous Solutions, Alisa Hashley

Graduate Theses & Non-Theses

Adsorptive processes can be used for metal contaminant removal. This work addresses magnetite, a magnetic iron oxide, as the adsorbent for use in an adsorptive removal system, known as the continuous flow material recovery system (CFMR), developed by Leitzke et al. [1]. Though the system is effective in removing contaminants from aqueous solution, efforts to further improve efficiency are being made. One way to improve the efficiency of the CFMR is to analyze the magnetite particles being used and investigate how the particle properties effect adsorption. The author’s research is presented and discussed here to describe the effects magnetite particle …


Process Intensification For Rare Earth Elements Adsorption By Resonant Vibratory Mixing, Oluwatosin Adebayo, Richard Ladouceur, Zainab Nasrullah May 2024

Process Intensification For Rare Earth Elements Adsorption By Resonant Vibratory Mixing, Oluwatosin Adebayo, Richard Ladouceur, Zainab Nasrullah

Graduate Theses & Non-Theses

The adsorption capacity for six rare earth elements (Lanthanum, Terbium, Neodymium, Dysprosium, Praseodymium, and Holmium) by biochar produced from hemp feedstock was investigated. An innovative approach to enhancing the adsorption of rare earth elements using biochar was studied and investigates the potential of resonant vibratory mixing (RVM) as a process intensification method compared to conventional mechanical mixing for the adsorption process. Hemp hurds as source of biomass was pyrolyzed to produce biochar at a temperature of 4500C for 60 minutes. The biochar was characterized by FTIR (Fourier Transform Infra-red), SEM (Scanning Electron Microscopy), Surpass 3 Electrokinetic solid surface analyzer, and …


Comparison Of Salicyl Hydroxamate Adsorption On Rare Earth Phosphates To Oxides And Carbonates, Stephanie Trant Oct 2018

Comparison Of Salicyl Hydroxamate Adsorption On Rare Earth Phosphates To Oxides And Carbonates, Stephanie Trant

Graduate Theses & Non-Theses

Adsorption behavior of the anionic collector salicyl hydroxamic acid (SHA) on a group of selected rare earth phosphates (REPs) was studied by means of experimental methods and modeling software. These REPs were then compared to rare earth carbonates (RECs) and rare earth oxides (REOs) to develop a trend. A suite of rare earth elements (REE) were studied that included light (LREE) and middle (MREE). Results for heavy (HREE) were inferred. Synthetic phosphate, oxide and carbonate powders of the rare earth elements Lanthanum (La), Cerium (Ce), Europium (Eu) and Dysprosium (Dy) were tested for these studies. Dysprosium phosphate was the only …


Surface Chemistry And Modelling Of Salicyl Hydroxamic Acid Adsorption At The Surface Of Rare Earth Oxides, Carbonates And Phosphates, Marc F. Sime Oct 2018

Surface Chemistry And Modelling Of Salicyl Hydroxamic Acid Adsorption At The Surface Of Rare Earth Oxides, Carbonates And Phosphates, Marc F. Sime

Graduate Theses & Non-Theses

The adsorption mechanism of salicyl hydroxamic acid (SHA, C7H7O3N) on rare earth minerals was investigated using two complementary methods: precipitation studies and modelling. Precipitation studies showed that SHA adsorption occurs through a displacement of the hydroxide ion at the surface in an ion exchange mechanism, leading to surface precipitation and/or chemisorption. Surface precipitation predominates in the light rare earth oxides (LREOs), while chemisorption predominates in the heavier REOs. Modelling revealed that adsorption of SHA on the REM surface is dependent upon the orientation of SHA on the surface as well as the distance between rare earth elements sites on the …


Continuous Flow Process For Recovery Of Metal Contaminants From Industrial Wastewaters With Magnetic Nanocomposites, David Hutchins Jul 2018

Continuous Flow Process For Recovery Of Metal Contaminants From Industrial Wastewaters With Magnetic Nanocomposites, David Hutchins

Graduate Theses & Non-Theses

Remediation of metal-containing industrial effluents presents both a technical challenge and an economic opportunity. Many industrial waste streams contain low levels of metal ions requiring treatment prior to discharge. Existing treatment technologies are frustrated by disparate compositions and low metal concentrations. Chemical precipitation is effective; however, it requires excessive reagents and discourages selective recovery. Ion-exchange enables recovery, but requires a batch process with extensive operational and maintenance demands, and is rarely implemented in large-scale applications. A continuous flow process capable of selective recovery would present many advantages over existing technologies.

This research examines and develops a continuous flow process for …


Adsorption Of Salicylhydroxamic Acid On Selected Rare Earth Oxides And Carbonates, Greer Galt Apr 2017

Adsorption Of Salicylhydroxamic Acid On Selected Rare Earth Oxides And Carbonates, Greer Galt

Graduate Theses & Non-Theses

Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA …


Aqueous Zinc Removal Using Nanoparticle Treated Natural Fibers, Daniel Zieske Apr 2015

Aqueous Zinc Removal Using Nanoparticle Treated Natural Fibers, Daniel Zieske

Graduate Theses & Non-Theses

The objective of this thesis research is to evaluate and enhance a recently developed water treatment technology. The technology was previously successful in removing airborne mercury from coal fired power plant flue gas, and has since been demonstrated to remove aqueous copper and cadmium. The technology uses natural coconut fibers impregnated with metal nanoparticles using a proprietary technique. A series of batch tests determined that both the treated and untreated natural fibers were capable of removing over 90% of aqueous zinc from a synthetic solution made by dissolving ZnCl2 salts in deionized water. Further testing with a bench scale continuous …