Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Selective Oxidation Of Iron In Chalcopyrite For Enhanced Copper Recovery, Khojiakbar Shuxrat O'G'Li Sultonov, Shokhrukh Toshpulatovich Khojiev, Gulnoza Berdiyor Qizi Beknazarova, Malika Sayfullayevna Saidova Apr 2024

Selective Oxidation Of Iron In Chalcopyrite For Enhanced Copper Recovery, Khojiakbar Shuxrat O'G'Li Sultonov, Shokhrukh Toshpulatovich Khojiev, Gulnoza Berdiyor Qizi Beknazarova, Malika Sayfullayevna Saidova

Technical science and innovation

This study explores the thermodynamic feasibility of selectively oxidizing iron contained in chalcopyrite mineral while preventing the oxidation of copper sulphide, with the ultimate goal of enhancing the copper concentration in the sulphide concentrate. A redox reaction in the solid phases between chalcopyrite and copper (I) oxide was constructed and subjected to thermodynamic analysis. The research identifies a crucial temperature range of 498-598 K (225-325 °C) as the most favourable for the redox reaction. The equilibrium constants at the selected optimal temperatures, 1.152 for chalcopyrite and 1.137 for copper (I) oxide, indicate that the redox reaction adheres to the expected …


Oxidation Of Additively Manufactured Zrb2–Sic In Air And In Co2 At 700–1000 °C, Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy Lee Watts, M. (Ming) C. (Chuan) Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke Jan 2024

Oxidation Of Additively Manufactured Zrb2–Sic In Air And In Co2 At 700–1000 °C, Marharyta Lakusta, Nicholas M. Timme, Abid H. Rafi, Jeremy Lee Watts, M. (Ming) C. (Chuan) Leu, Gregory E. Hilmas, William G. Fahrenholtz, David W. Lipke

Materials Science and Engineering Faculty Research & Creative Works

Oxidation behavior of additively manufactured zrb2–sic in air and in co2 is reported in the temperature range of 700–1000 °c. Observed scale morphologies in air and in co2 were similar, featuring an outer borosilicate layer and an inner porous zirconia layer containing partially oxidized silicon carbide particles and remnant borosilicate products. Oxide scale thicknesses and parabolic scaling constants in air were approximately twice those observed in co2 across all studied temperatures. Activation energies for oxidation of 140 ± 20 kj/mol in air and 110 ± 20 kj/mol in co2 were determined, indicating similar diffusion processes that appear to be rate-limiting. …