Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Investigation And Control Of Görtler Vortices In High-Speed Flows, Omar Es-Sahli Dec 2023

Investigation And Control Of Görtler Vortices In High-Speed Flows, Omar Es-Sahli

Theses and Dissertations

High-amplitude freestream turbulence and surface roughness elements can excite a laminar boundary-layer flow sufficiently enough to cause streamwise-oriented vortices to develop. These vortices resemble elongated streaks having alternate spanwise variations of the streamwise velocity. Following the transient growth phase, the fully developed vortex structures downstream undergo an inviscid secondary instability mechanism and, ultimately, transition to turbulence. This mechanism becomes much more complicated in high-speed boundary layer flows due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this research, we formulate and test an optimal control algorithm to suppress the growth rate of the aforementioned …


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Oct 2023

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Intelligent Traffic Control With Connected And Automated Vehicles, Yang Shi May 2023

Intelligent Traffic Control With Connected And Automated Vehicles, Yang Shi

Doctoral Dissertations

The recent advancements in communication technology, transportation infrastructure, computational techniques, and artificial intelligence are driving a revolution in future transportation systems. Connected and Automated Vehicles (CAVs) are attracting a lot of attention due to their potential to reduce traffic accidents, ease congestion, and improve traffic efficiency. This study focuses on addressing the challenges in controlling future CAV-enabled transportation systems. The aim is to develop a framework for the control of CAV-based traffic systems to improve roadway safety, travel efficiency, and energy efficiency. The study proposes new methods for vehicle speed control and traffic signal control at signalized intersections and corridors …


Quadcopter Control Using Single Network Adaptive Critics, Alberto Velazquez, Lei Xu, Tohid Sardarmehni Feb 2023

Quadcopter Control Using Single Network Adaptive Critics, Alberto Velazquez, Lei Xu, Tohid Sardarmehni

Mechanical Engineering Faculty Publications and Presentations

In this paper, optimal tracking control is found for an inputaffine nonlinear quadcopter using Single Network Adaptive Critics (SNAC). The quadcopter dynamics consists of twelve states and four controls. The states are defined using two related reference frames: the earth frame, which describes the position and angles, and the body frame, which describes the linear and angular velocities. The quadcopter has six outputs and four controls, so it is an underactuated nonlinear system. The optimal control for the system is derived by solving a discrete-time recursive Hamilton-Jacobi-Bellman equation using a linear in-parameter neural network. The neural network is trained to …