Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Faceted Nanomaterial Synthesis, Characterizations And Applications In Reactive Electrochemical Membrane Filtration, Qingquan Ma Dec 2022

Faceted Nanomaterial Synthesis, Characterizations And Applications In Reactive Electrochemical Membrane Filtration, Qingquan Ma

Dissertations

Facet engineering of nanomaterials, especially metals and metal oxides has become an important strategy for tuning catalytic properties and functions from heterogeneous catalysis to electrochemical catalysis, photocatalysis, biomedicine, fuel cells, and gas sensors. The catalytic properties are highly related to the surface electronic structures, surface electron transport characteristics, and active center structures of catalysts, which can be tailored by surface facet control. The aim of this doctoral dissertation research is to study the facet-dependent properties of metal or metal oxide nanoparticles using multiple advanced characterization techniques. Specifically, the novel atomic force microscope-scanning electrochemical microscope (AFM-SECM) and density functional theory (DFT) …


Determination Of Oxidation-Reduction Potential And Iron Chemistry For Solutions Generated During The Hydrometallurgical Extraction Of Copper, Jiahao Xu Dec 2022

Determination Of Oxidation-Reduction Potential And Iron Chemistry For Solutions Generated During The Hydrometallurgical Extraction Of Copper, Jiahao Xu

Open Access Theses & Dissertations

Oxidation-reduction potential (ORP) based on iron chemistry is one of the key operating parameters during the hydrometallurgical extraction of copper. A novel ORP equation was developed previously only based on the variables of temperature and nominal ferric/ferrous ratio to predict the redox potential of the quaternary H2SO4-Fe2(SO4)3-FeSO4-H2O system. However, its applicability in more complex acidic iron sulfate solutions during the hydrometallurgical extraction of copper with different temperatures, acidic concentration, cupric concentration, nominal ferric/ferrous ratio, and total and l iron concentration has not been extended and validated. This work evaluates the applicability of novel oxidation-reduction potential equation in the H2SO4-Fe2(SO4)3-FeSO4-H2O and …


Extending The Low-Temperature Operation Of Sodium Metal Batteries Combining Linear And Cyclic Ether-Based Electrolyte Solutions, Haoyu Zhu, Hui Xiong Aug 2022

Extending The Low-Temperature Operation Of Sodium Metal Batteries Combining Linear And Cyclic Ether-Based Electrolyte Solutions, Haoyu Zhu, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to −150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to −80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between −20 °C and −60 °C of full Na||Na3V2(PO4)3 coin cells. The cell tested at −40 °C shows an initial discharge capacity of 68 mAh g−1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g−1.


New Solid Polymer Electrolytes For Lithium, Sodium, And Calcium-Based Batteries, Francielli Silva Genier Jul 2022

New Solid Polymer Electrolytes For Lithium, Sodium, And Calcium-Based Batteries, Francielli Silva Genier

Dissertations - ALL

The establishment of sustainable energy sources highly depends on efficient storage devices to guarantee a consistent power supply. The growing demand for lithium-ion batteries (LIBs) for this purpose, combined with concerns about lithium availability, has motivated the search for viable storage alternatives, such as sodium and calcium. While several studies have investigated different lithium-free liquid electrolytes, the transport of these alternative ions in their polymer counterparts remains understudied. The advantages of solid polymer electrolytes include the possibility of higher energy density in solid-state devices and the elimination of safety concerns associated with liquid electrolytes, such as flammability, leakage, and dendrite …


Introduction Of Development And Application Technology Of Organic Additives For Acid Copper Electroplating, Hao-Bin Zou, Chao-Li Tan, Wei Xiong, Dao-Lin Xi, Bin-Yun Liu Jun 2022

Introduction Of Development And Application Technology Of Organic Additives For Acid Copper Electroplating, Hao-Bin Zou, Chao-Li Tan, Wei Xiong, Dao-Lin Xi, Bin-Yun Liu

Journal of Electrochemistry

Acid copper electroplating is one of the key technologies in buildup multilayer PCB (BUM-PCB) manufacture process and the most important technique to achieve electrical interconnection between any layer and high-density interconnection in a substrate. This article introduces the research focus of organic additives used in acid copper electroplating, and developing different kinds of micro-via filling copper electroplating technique applied in various scenarios, and some other technical problems from applications. First of all, according to the chronopotentiometric (CP) experiment results, the levelers with different polymeric molecular structures exhibited various responses of cupric deposition potential along with their increased concentrations, which is …


Manipulated Electrochemical Surface Reactions Induced By Oscillatory Electric Potentials On Metal Based Electrodes, Thomas Stone Welles May 2022

Manipulated Electrochemical Surface Reactions Induced By Oscillatory Electric Potentials On Metal Based Electrodes, Thomas Stone Welles

Dissertations - ALL

This research effort investigates the manipulation of surface electrochemical reactions induced by oscillating electric potentials on the surface of metal-based electrodes. Specifically, this research presents experimental data identifying modified electrochemical surface reactions caused by low magnitude electric potential oscillations on multilayered catalytic membranes and on implanted biometallic alloys. The scope of this effort consists of four major components: (1) perform an exhaustive literature review and analysis of the current understanding in applied surface electrochemistry and develop potential theoretical frameworks by which to interpret the experimental results; (2) identify the electrochemical manipulation via electrical oscillation while reacting nitric oxide on a …


Electrochemical Impedance Spectroscopy Of Zirconium Oxidation For In-Situ Nuclear Sensing Applications, Michael Andrew Reynolds May 2022

Electrochemical Impedance Spectroscopy Of Zirconium Oxidation For In-Situ Nuclear Sensing Applications, Michael Andrew Reynolds

Boise State University Theses and Dissertations

To meet the ever-growing energy demands of the modern world, alternative forms of producing power are necessary, and the field of nuclear engineering holds promise to answer this call. Nuclear fuel cladding in light water reactors (LWRs) currently draws a large amount of attention from scientists and researchers, as it provides many challenges to design around. Since the 1950s, zirconium and its protective oxide layer have been utilized as an effective material for the task, possessing good mechanical strengths, high corrosion resistance, and a low neutron absorption cross section. Despite these beneficial properties, however, fuel cladding remains vulnerable to several …


Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta May 2022

Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta

Electronic Theses and Dissertations

Mass industrialization over the last few centuries has created a global economy which is dependent upon fossil fuels to satisfy an exponentially increasing demand for energy. Aside from the possible depletion of this finite resource, the combustion of fossil fuels releases greenhouse gases into the atmosphere which cause the global temperature to rise – a phenomenon which has already begun to create geologic and geopolitical instability and shows no signs of abatement. One proposed method to rid humanity of its dependence on fossil fuels is to use green hydrogen as an energy carrier. In this scheme, excess electricity from a …


Highly Active And Stable Low-Pgm And Pgm-Free Catalysts For Anion Exchange Membrane Fuel Cells, Horie Adabi Firouzjaie Apr 2022

Highly Active And Stable Low-Pgm And Pgm-Free Catalysts For Anion Exchange Membrane Fuel Cells, Horie Adabi Firouzjaie

Theses and Dissertations

Anion exchange membrane fuel cells (AEMFCs) have recently seen significant growth in interest as their achievable current density, peak power density, and longevity have been dramatically improved. Though these advances in performance have been important for demonstrating the feasibility of the technology, nearly all AEMFCs reported in the literature have required a relatively high loading of platinum group metal (PGM)- based catalysts at both the anode and cathode electrodes. However, to take command of the low-temperature fuel cell market, AEMFCs cannot simply reach the same performance as incumbent proton exchange membrane fuel cells (PEMFCs), which have had decades of development …


A Comparison Of Square-Wave Voltammetry Models To Determine The Number Of Electrons Exchanged In Metal Deposition, Ranon Fuller, Tyler Williams, Mark H. Schvaneveldt, Devin Rappleye Mar 2022

A Comparison Of Square-Wave Voltammetry Models To Determine The Number Of Electrons Exchanged In Metal Deposition, Ranon Fuller, Tyler Williams, Mark H. Schvaneveldt, Devin Rappleye

Faculty Publications

A comparison of square-wave voltammetry models for calculating the number of electrons exchanged in a metal deposition reaction. Experiments were conducted for silver deposition on platinum in an aqueous HNO3 solution and for nickel and lanthanum deposition on platinum in molten LiCl. Diffusion coefficients for Ni2+ and La3+ in LiCl at 700oC are calculated. Accuracy of soluble-soluble models versus a soluble-insoluble model is discussed. A simple method for determining the number of electrons exchanged under the constraint of well-compensated ohmic drop is proposed and evaluated.


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …