Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt Dec 2021

Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt

Graduate Theses and Dissertations

The increase in energy demanded by transportation and energy sectors has necessitated highly efficient thermal management for reliable power electronics operations. Conventional cooling techniques are limited by their inability to target switching location hot spot temperatures, leading to non-uniform thermal gradients. These devices, such as cold plates and heat sinks, also utilize heavy metallic structures that can accentuate electromagnetic interferences generated by high voltage switching processes. This work proposes a non-metallic jet impingement cooler for more customized thermal management, while simultaneously reducing the harmful effects of electromagnetic interferences. Additive manufacturing is utilized to enable jet impingement zones to target individual …


Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis Dec 2021

Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis

Graduate Theses and Dissertations

The reliability of electronic devices is dependent upon the conditions to which they are subject. Temperature variations coupled with differences in thermal expansion between bonded materials results in thermomechanical stresses to build up, which can instigate failure in the interconnects or other critical regions. With the move towards electrification in the automotive industry, there is the increasingly important consideration of powertrain electronics reliability, the pertinent conditions being governed by the drive cycle or mission profile of the vehicle. The mission profile determines the power dissipated by the electronic devices, which determines the peak and mean temperature, temperature swing and the …


Analysis And Design Of 3-Phase Unfolding Based Ac-Dc Battery Chargers, Rees R. Hatch Aug 2021

Analysis And Design Of 3-Phase Unfolding Based Ac-Dc Battery Chargers, Rees R. Hatch

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis presents the analysis and design of high-efficiency battery chargers for heavy duty EV applications. The rise in popularity of the electric vehicles (EVs) due to their increased efficiency over conventional internal combustion engines, has driven the need for more battery charging infrastructure. Furthermore, heavy duty vehicles are also being converted to electric to fill needs such as public transportation via bus fleets as well as cargo delivery via semi-trucks. Such heavy duty vehicles require more energy than personal transportation vehicles and thus require larger battery packs. To charge heavy duty battery packs in the same amount of time …


Characterization Of Wide-Bandgap Sic Field Effect Transistors And Their Active Gate Driving Circuit In High Power Applications, Arijit Sengupta Aug 2021

Characterization Of Wide-Bandgap Sic Field Effect Transistors And Their Active Gate Driving Circuit In High Power Applications, Arijit Sengupta

Legacy Theses & Dissertations (2009 - 2024)

Silicon Carbide (SiC) devices are slowly becoming one of the most reliable choices for high power density, high switching frequency applications with higher efficiency than Gallium Nitride (GaN) and Silicon (Si) devices. For a wide range of applications, such as Electric Motor Drives, Switching Power Supplies, and Renewable Energy Circuits, SiC devices are being tested and are found to yield prominent results.In this research, the characterization of two similarly rated commercially available SiC devices - a trench Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and a cascoded Junction Field Effect Transistor (JFET) are done. It is followed by a comparative analysis of both …


Zero Voltage Switching Hybrid Voltage Divider Converter, Timothy Jeong Jun 2021

Zero Voltage Switching Hybrid Voltage Divider Converter, Timothy Jeong

Master's Theses

This project proposes a new hybrid voltage divider DC-DC converter that utilizes switching capacitors and inductors to produce zero voltage switching (ZVS) at the turn on state of its switches. By achieving ZVS, the switching losses are significantly reduced; thus, increasing the overall efficiency of the converter at various loads. The goal for this thesis is to perform analysis of the operation of the converter, derive equations for sizing the main components, and demonstrate its functionality through computer simulation and hardware prototype. Results of the simulation and hardware testing show that the proposed converter produces the desired output voltage while …


An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid May 2021

An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid

Graduate Theses and Dissertations

Due to narrower bandgap and lower critical electric field, silicon (Si) power devices have reached their limit in terms of the maximum blocking voltage capability. Exploiting this limitation, wide bandgap devices, namely silicon carbide (SiC) and gallium nitride (GaN) devices, are increasingly encroaching on the lucrative power electronics market. Unlike GaN, SiC devices can exploit most of the established fabrication techniques of Si power devices. Having substrate of the same material, vertical device structures with higher breakdown capabilities are feasible in SiC, unlike their GaN counterpart. Also, the excellent thermal conductivity of SiC, compared to GaN and Si, let SiC …


Modular Multilevel Converters With Module-Level Energy Storage For Medium Voltage Applications, Bora Novakovic May 2021

Modular Multilevel Converters With Module-Level Energy Storage For Medium Voltage Applications, Bora Novakovic

Theses and Dissertations

This dissertation is on Modular Multilevel Converter (MMC) converter design and analysis and its integration with energy storage at the low voltage module-level. The developed converter concept and topology can be used in various applications especially for the support of intermittent renewable energy resources. The general converter structure is analyzed and extended to include integrated energy storage suitable but not limited to medium voltage applications. The behavior of the idealized structure is analyzed to obtain equations that govern general converter behavior and identify possible control loops. Detail mathematical switching model is developed for the MMC converter with generalized module structure. …


A Communications Testbed For Testing Power Electronic Agent Systems, Benjamin R. Dean May 2021

A Communications Testbed For Testing Power Electronic Agent Systems, Benjamin R. Dean

Masters Theses

As power electronic system (PES) continue to incorporate complex intra-system communication, understanding and characterizing this communication has become a complex task. Knowing how a system’s communication will behave is vital to ensuring proper operation of these systems. This thesis proposes and outlines a communication testbed that streamlines the development and testing of the communications between the components of PES, and further presents the characterization of communication protocol utilized in these multi-agent PESs. These communication protocols include MQTT, Modbus, or User Datagram Protocol (UDP). Understanding the different behavior of these protocols presents is paramount for the design of PESs.


Controller Modeling And Stability Analysis Of Multiple Input Single Output Dc-Dc Converter, Astha Adhikari Mar 2021

Controller Modeling And Stability Analysis Of Multiple Input Single Output Dc-Dc Converter, Astha Adhikari

Master's Theses

This thesis entails the stability analysis of the Multiple Input Single Output (MISO) DC-DC converter developed for the DC House Project at Cal Poly. A frequency domain control system model of the MISO converter was designed and constructed using MATLAB Simulink. Transfer functions were derived and modeled for each stage of the converter to best fit the converter circuit system used in the original MISO circuit. Stability metrics such as overshoot, undershoot, rise time, phase margin and gain margin were measured to evaluate and analyze the stability of the converter. These metrics were measured with the original model including the …