Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Epoxy Curing: Paramount Or Trivial? A Cure Path Dependent Inquiry, Jared Bates Jul 2021

Epoxy Curing: Paramount Or Trivial? A Cure Path Dependent Inquiry, Jared Bates

Dissertations

The presented research delves into epoxy network formation corroborating reactant concentration profiles and physical property development throughout cure, providing an experimental basis for burgeoning molecular dynamics and coarse-grained simulation methodologies. Herein, three primary subjects were investigated: the first two examine neat and toughened epoxide/amine network formation with respect to various cure profiles aimed at altering reaction pathways, the final chapter intends to augment traditionally utilized activation energy (Ea) methodologies.

Neat and toughened epoxide/amine slurries were monitored in-situ throughout cure via near infrared (NIR) spectroscopy and rheological techniques. Functional group conversion and moduli development were related with specific attention …


Engineering Advanced Material Properties For Polymeric Materials Through Miscible And Immiscible Additives, Chinmay M. Saraf Jun 2021

Engineering Advanced Material Properties For Polymeric Materials Through Miscible And Immiscible Additives, Chinmay M. Saraf

Doctoral Dissertations

This dissertation focuses on engineering polymeric formulations using strategically selected additives or novel processes to achieve advanced material properties. The first chapter reviews the state-of-the-art impact modification and discusses micro-mechanics associated with soft particle toughening of polymeric materials. We present an analytical solution to elucidate the effect of concentration of rubbery domains on matrix yielding and energy absorption. Soft particle toughening relies on particle size, interparticle spacing, and concentration of rubbery phase. The second chapter demonstrates developing impact modified stereolithography (SLA) resins for the superior energy absorption of the SLA printed thermosets. SLA resins are engineered using additives that remain …


Sealant Injectivity Through Void Space Conduits To Assess Remediation Of Well Cement Failure, Mohammed Alkhamis, Abdulmohsin Imqam Jun 2021

Sealant Injectivity Through Void Space Conduits To Assess Remediation Of Well Cement Failure, Mohammed Alkhamis, Abdulmohsin Imqam

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The primary cement of oil and gas wells is prone to fail under downhole conditions. Thus, a remedial operation must be conducted to restore the wellbore integrity and provides zonal isolation. Many types of materials are currently used and/or have the potential to be employed in wellbore integrity applications, including, but not limited to, conventional Portland cement, microfine and ultrafine cement, thermoset materials, and thermoplastic materials. In this study, several types of materials were selected for evaluation: (1) conventional Portland cement, which is the most widely used in remedial operations in the petroleum industry, (2) polymer resin, which is one …


The Effects Of Glass Fiber Fillers On Epoxy Resin Performance, Ashton Robert Reinhold, Manuel Jose Aguirre Ii Jun 2021

The Effects Of Glass Fiber Fillers On Epoxy Resin Performance, Ashton Robert Reinhold, Manuel Jose Aguirre Ii

Materials Engineering

Premature failure of filtration members in biochemical processing is a costly issue for manufacturers. This research aims to determine whether or not the premature failure due to thermal fatigue in medical filtration devices can be mitigated by glass fiber addition. The study was conducted to identify the effects of e-glass fiber filler content in an epoxy matrix on the mechanical and thermal properties of the epoxy system. The epoxy was evaluated over a filler content of 0-50wt% in level increments of 12.5wt% and temperatures ranging from ambient to 160°C in increments of 15°C. Cylindrical and tensile bar specimens were prepared …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Atomic Oxygen Resistant Low Earth Orbit Stable Polymer Matrix Composites Employing Phenylphosphine Oxide Epoxy-Amines, Witold Fuchs May 2021

Atomic Oxygen Resistant Low Earth Orbit Stable Polymer Matrix Composites Employing Phenylphosphine Oxide Epoxy-Amines, Witold Fuchs

Dissertations

Atomic oxygen (AO) attacks polymer matrix composites (PMC’s) on the surfaces of spacecraft in low earth orbit (LEO) and threatens safe spacecraft operation and service life. Incorporating phenylphosphine oxide (PPO) groups into polymer chains offers a self-regenerating method of protection from AO but remains poorly understood. Herein, epoxies containing PPO groups were synthesized with increasing concentrations of phosphorus [P] from 0 to 8 wt % to investigate their AO resistance. Measurements confirmed the exposure of these materials to AO produces a passivation phosphate (POx) layer on the surface of the sample and the efficacy of the resultant layer was directly …


Discontinuous Fiber Vacuum Assisted Compression Molding, Bennet Heidenreich Apr 2021

Discontinuous Fiber Vacuum Assisted Compression Molding, Bennet Heidenreich

Electronic Thesis and Dissertation Repository

Discontinuous short fiber carbon reinforced polymer (CFRP) composites were manufactured, and tested to demonstrate feasibility, and to document material properties. Different variations of manufacturing techniques were tested including continuous fiber reinforcement, metal inserts, and randomization of the dry fibers before processing. The process produced parts with strength to weight ratios similar to 6061-T6 aluminum without continuous fiber reinforcement, and 53% higher when small volumes of continuous reinforcement are added. Randomization of fibers produced no significant change in strength of the material, but did increase compression stiffness of the mixture while molding, increasing tool deflection. A pin joint was tested, and …