Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

CFD

Discipline
Institution
Publication
Publication Type
File Type

Articles 1 - 29 of 29

Full-Text Articles in Engineering

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu Dec 2021

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu

Dissertations

Distillation of aqueous solutions and aqueous mixtures has vast industrial applications, including desalination, wastewater treatment, and fruit juice concentration. Currently, two major distillation technologies are adopted in the industry, membrane separation and thermal distillation. However, both of them face certain inevitable drawbacks. Membrane separation has disadvantages as relying on high-grade energy, requiring membrane, fouling problem, narrow treatment range, limited scalability, and vibrating and noisy operating conditions. Traditional thermal distillation technologies can avoid above concerns but has other shortcomings, such as relatively low energy efficiency and yield rate, complicated and bulky system structure, and scaling problem.

This project proposes an innovative …


A Parametric Computational Fluid Dynamics (Cfd) Study Of In-Line Horizontal Axis Wind Turbines (Hawts) With Yaw, North Alyster Yates Dec 2021

A Parametric Computational Fluid Dynamics (Cfd) Study Of In-Line Horizontal Axis Wind Turbines (Hawts) With Yaw, North Alyster Yates

Masters Theses

Because of the constant use of non-renewable fossil fuels, and the enormous impact they have on global warming and pollution, there has been a push to use more eco-friendly and renewable sources for power. One such form is wind power via turbines. The most common form, Horizontal Axis Wind Turbines (HAWTs), can generate massive amounts of power. However, they also have a serious flaw in their design. As the wind passes through the swept area of the blades and past the tower, it creates massive disturbances in the airflow. These disturbances are called a ‘wake’. When trying to create a …


Cedar: A Dimensionally Adaptive Flow Solver For Cylindrical Combustors, Ty R. Hosler Dec 2021

Cedar: A Dimensionally Adaptive Flow Solver For Cylindrical Combustors, Ty R. Hosler

Theses and Dissertations

This thesis discusses the application, evaluation, and extension of dimensionally adaptive meshing to the numerical solution of velocity and pressure fields inside cylindrical reactors. Due to the high length to diameter ratios of many cylindrical reactor vessels the flow field can become axisymmetric, allowing for simplification of the governing equations and significant reduction in computational time required for solution. A fully 3D solver is developed from existing computational tools at BYU and validated against theoretical velocity profiles for pipe flow at various Reynolds numbers, as well as with experimental data for an axial-fired center jet with recirculating flow. Dimensionally adaptive …


Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel Dec 2021

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel

Doctoral Dissertations

Matrix normalizations are a critical component of mathematically rigorous aerodynamics analysis, especially where kinematic and thermodynamic behaviors are of interest. Here, a matrix normalization based around the entropy of a perturbation is derived according to the principles of mathematical entropy analysis and using a general definition of entropy amendable to physical phenomena such as thermal nonequilibrium and caloric and thermal imperfection. This normalization is shown to be closely related to the contemporary Chu energy normalization, expanding the range of validity of that normalization and clarifying the details of its interpretation. This relationship provides a basis for deriving other normalizations. Entropy …


Design Of A 300cm2 Pemfc Stack With Force And Cfd Simulation To Optimize Flow Channels, Gasket Design, And Clamping Forces., Robert M. Ench Dec 2021

Design Of A 300cm2 Pemfc Stack With Force And Cfd Simulation To Optimize Flow Channels, Gasket Design, And Clamping Forces., Robert M. Ench

Electronic Theses and Dissertations

Proton exchange membrane fuel cells are important to the future of green energy as hydrogen can be made with green technologies and store energy for later use. Fuel cells can efficiently convert the hydrogen to electricity as needed. This study uses Solidworks simulation to make design improvements to the fuel cell before the prototype build stage of testing; this saves money and time by reducing the prototype builds needed.

In this study, a multi-channel serpentine design with two outlets versus a single outlet is evaluated using CFD to investigate pressure drop. Lower pressure drops are desirable as less energy input …


Quantification Of Velocity At The Sparkplug In A Lab Scale Combustion Chamber, Mayur Panduranga Kodikal Oct 2021

Quantification Of Velocity At The Sparkplug In A Lab Scale Combustion Chamber, Mayur Panduranga Kodikal

Electronic Theses and Dissertations

Lean burn has been considered an effective strategy to improve the thermal efficiency of spark-ignition engines. Under lean or diluted conditions, however, the combustion speed is reduced. Therefore, to speed up the combustion, in-cylinder turbulence is induced which may impede the spark initiation. This research aims to quantify the turbulence in a constant volume optical combustion chamber.

An Improved Delayed Detached Eddy Simulation (IDDES) study was done to understand the turbulence characteristics of the flow in the optical chamber. Spark anemometry was used to obtain a relationship between the spark plasma evolution and freestream velocity. Finally, this technique has been …


Cfd Analysis Of Subcutaneous Deposition And Dispersion Of Insulin In Adipose Tissue, Ryan C. Lubbers Aug 2021

Cfd Analysis Of Subcutaneous Deposition And Dispersion Of Insulin In Adipose Tissue, Ryan C. Lubbers

Masters Theses

Drug delivery is the most important factor of many therapies, but a lack of technology and research have led to a very generalized understanding of drug kinetics. Insulin pump therapy for the treatment of Type 1 Diabetes depends on precise delivery of the hormone into the adipose region between the dermis and underlying muscle. The kinetics of insulin within the adipose tissue environment is not well understood and varies greatly case to case. The use of computation fluid dynamics (CFD) models to study insulin kinetics in relation to influential factors will lead to a better understanding of the characteristics of …


Flow Characterization In Mine Ventilation Fan Blade Design Using Cfd, Anwar Endris Hassen Aug 2021

Flow Characterization In Mine Ventilation Fan Blade Design Using Cfd, Anwar Endris Hassen

Journal of Sustainable Mining

In axial ventilation fans, the generation of a uniform flow velocity is desirable for better efficiency. To that end, different fan blade types have been developed to achieve better flow uniformity. This article aimed to characterize the flow distribution and its uniformity in four blade designs, namely constant chord, tapered blade, skewed blade, and tapered skewed blade, using Computational Fluid Dynamics (CFD). The study employs an iterative study where key study decisions are made as the study progresses. The study began with the selection of a blade profile for the study. A comparative study between the NACA seven-digit and four-digit …


Venturi Meter Performance When Installed On The Branch Of A Tee Junction With Converging Run Flow, E. Elliot Naulu Aug 2021

Venturi Meter Performance When Installed On The Branch Of A Tee Junction With Converging Run Flow, E. Elliot Naulu

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Venturi flow meters are often installed downstream of disturbances such as a tee junction, valve, or elbow. In such a case, a laboratory calibration may be needed to measure the Venturi meter’s performance under said limitations so that accurate metering is achieved. However, in some cases, laboratory calibration may not be possible.The purpose of this research was to investigate Computational Fluid Dynamics (CFD) ability to simulate a Venturi meter installed on the branch of a tee junction with converging run flow.

This study used CFD to compare against laboratory results to illustrate CFD’s capability as a calibration method. The results …


Refinement And Automation Using Algorithmic Control Of Breathforce, A Respiratory Training System For Patients With Spinal Cord Injuries., Anna Goestenkors Aug 2021

Refinement And Automation Using Algorithmic Control Of Breathforce, A Respiratory Training System For Patients With Spinal Cord Injuries., Anna Goestenkors

Electronic Theses and Dissertations

Spinal cord injuries (SCI) can lead to impaired respiratory and cardiovascular function and a general decrease in lung compliance. This can complicate breathing as well as impair the ability to sigh, cough, and clear secretions, leading to increased risk of respiratory infections. Respiratory training has been shown to combat these effects. BreathForce is under active development to create a user-centric inspiratory-expiratory device that is an affordable option for at-home training. This study reports on the refinement of valve design and automation incorporated into BreathForce to enhance and enforce clinical practices and processes as part of the respiratory training protocol used …


Numerical Investigation Of The Thermo-Hydraulic Performance Of Water-Based Nanofluids In A Dimpled Channel Flow Using Al₂O₃, Cuo, And Hybrid Al₂O₃-Cuo As Nanoparticles, Farid Ahmed, Md Atrehar Abir, Muhtasim Fuad, Farhana Akter, Palash K. Bhowmik, Syed B. Alam, Dinesh Kumar Jul 2021

Numerical Investigation Of The Thermo-Hydraulic Performance Of Water-Based Nanofluids In A Dimpled Channel Flow Using Al₂O₃, Cuo, And Hybrid Al₂O₃-Cuo As Nanoparticles, Farid Ahmed, Md Atrehar Abir, Muhtasim Fuad, Farhana Akter, Palash K. Bhowmik, Syed B. Alam, Dinesh Kumar

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

In this study, the authors study the impact of spherical dimple surfaces and nanofluid coolants on heat transfer and pressure drop. The main objective of this paper is to evaluate the thermal performance of nanofluids with respect to different Reynolds numbers (Re) and nanoparticle compositions in dimpled channel flow. Water-based nanofluids with Al2O3, CuO, and Al2O3-CuO nanoparticles are considered for this investigation with 1%, 2%, and 4% volume fraction for each nanofluid. The simulations are conducted at low Reynolds numbers varying from 500 to 1250, assuming constant and uniform heat flux. The …


Numerical Study On Oscillating Flow Over A Flat Plate Using Pseudo-Compressibility In Intermittent Turbulent Regime, Shivank Srivastava Mr. May 2021

Numerical Study On Oscillating Flow Over A Flat Plate Using Pseudo-Compressibility In Intermittent Turbulent Regime, Shivank Srivastava Mr.

University of New Orleans Theses and Dissertations

A Computational Fluid Dynamic (CFD) in-house code is developed to study unsteady characteristics of incompressible oscillating boundary layer flow over a flat plate under laminar and intermittently turbulent condition using pseudo-compressible unsteady Reynolds Averaged Navier- Stokes (RANS) model. In the in-house code, the two-dimensional, unsteady conservation of mass and momentum equations are discretized using finite difference techniques which employs second order accurate (based on Taylor series) central differencing for spatial derivatives and second order Runge-Kutta accurate differencing for temporal derivatives. The in-house code employs Fully Explicit-Finite Difference technique (FEFD) to solve the governing differential equations of the mathematical model. In …


The Effect Of Fuel Injector Spacing, Angle, And Blowing Ratio On The Fuel Air Mixing Performance Of A Scramjet Engine, Jonathan R. Copeland May 2021

The Effect Of Fuel Injector Spacing, Angle, And Blowing Ratio On The Fuel Air Mixing Performance Of A Scramjet Engine, Jonathan R. Copeland

Honors College Theses

In the operation of a Scramjet engine, which operates at hypersonic velocities, one of the most important factors is mixing the fuel and air before the high velocity air stream through the engine blows the mixture out of the engine before it could burn. Because of the importance of rapidly mixing fuel and air within a Scramjet engine, there are multiple design elements used to increase mixing. One of which is called a flame holder cavity, which is usually located behind fuel injectors, and designed with an open (length to depth ratio is less than 10) geometry to promote recirculation …


Computational Fluid Dynamics And Fluid Structure Interaction Research On Flow In A Glenn Shunt And A Flexible Tube And On A Cantilevered Plate, Chunhui Wang May 2021

Computational Fluid Dynamics And Fluid Structure Interaction Research On Flow In A Glenn Shunt And A Flexible Tube And On A Cantilevered Plate, Chunhui Wang

McKelvey School of Engineering Theses & Dissertations

This thesis employs Computational Fluid Dynamics (CFD) simulation technology to solve three flow problems: (1) Blood flow in a Bidirectional Glenn Shunt and a combined Bidirectional Glenn Shunt (BGS) and Blalock-Taussing (BT) Shunt. This shunt is used to address the problem of Cyanosis or “Blue Baby Syndrome,” which is an infant disorder that affects the newly born babies whose skins turn blue or purple because of lack of necessary blood flow between heart and lung due to pulmonary vascular blockage. The goal of this study was to evaluate the performance of BGS and combined BGS+BT shunt in achieving the desired …


Numerical Simulation Of Losses In Four-Way Pipe Junctions, Simon Barth May 2021

Numerical Simulation Of Losses In Four-Way Pipe Junctions, Simon Barth

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

To design pipelines, engineers need to know how much energy the fluid in the pipe has at different locations in the pipe network. The energy the fluid has comes in the form of pressure, velocity, and elevation. As fluid travels through a pipe, it loses energy for many different reasons. Some of those reasons include friction between the fluid and the pipe wall, shear forces within the fluid, changes in flow direction, changes in elevation, or various pipe fittings like elbows, tee’s, valves, reducers, and expanders. Many of the causes of energy loss are well researched. One cause of energy …


Cfd Analysis Of Acoustofluidic Channels And The Effects On Biologic Delivery., Zachary T. Long May 2021

Cfd Analysis Of Acoustofluidic Channels And The Effects On Biologic Delivery., Zachary T. Long

Electronic Theses and Dissertations

T-cell transformation is an ever-expanding treatment for several types of cancer, with a potential to be adapted to other disorders in which the immune system plays a key role in the pathophysiology. Currently, all FDA approved chimeric antigen receptor (CAR) T-cell cancer therapies rely on transformation via viral transduction. However, viral transduction is plagued by poor consistency and the potential to create adverse immune reactions when T-cells are reintroduced into a patient. Other transformation methods are being explored, with an alternative called acoustofluidic sonoporation showing promise. In these procedures, cells are passed through a channel, of the millimeter scale, while …


Thermal Design Analysis Of Server Chassis Manifolds For Liquid Cooled Servers Using Cfd, Kaustubh Kantilal Adsul May 2021

Thermal Design Analysis Of Server Chassis Manifolds For Liquid Cooled Servers Using Cfd, Kaustubh Kantilal Adsul

Mechanical and Aerospace Engineering Theses

Direct-to-chip liquid cooling is one of the most popular methods in data center thermal management when it comes to cooling high chip power densities. A cold plate-based liquid cooling system contains various components such as pumps, data center room, and rack-level manifolds, and server chassis-level manifold. Efficient coolant distribution to the heat-dissipating cold plates plays an important role in both the thermal and hydraulic performance of the server. It is, thus, very important to design and manufacture server chassis manifold geometry that can perform efficiently under the anticipated heat loads and coolant flow rates. In the present thesis, two such …


Experimental And Numerical Investigation Of The Effect Of Integration Of A Flooded-Bed Scrubber Into A Longwall Shearer On Airflow Along A Coal Mine Longwall Face, Sampurna Arya, Thomas Novak, Joseph Sottile Apr 2021

Experimental And Numerical Investigation Of The Effect Of Integration Of A Flooded-Bed Scrubber Into A Longwall Shearer On Airflow Along A Coal Mine Longwall Face, Sampurna Arya, Thomas Novak, Joseph Sottile

Mining Engineering Faculty Publications

Dust control is one of the most difficult challenges for underground coal mine operators, especially longwall mine operators. The most widely used dust control technologies at a longwall section are ventilation air and water sprays, whereas a continuous miner section has the added advantage of having a dust scrubber built into the continuous miner. To test the potential benefits of integrating a flooded-bed scrubber into a longwall shearer, the authors designed and built a dust scrubber system for a full-scale mock-up of a longwall shearer. The mock-up was installed in the longwall test gallery at the Pittsburgh Research Laboratory (PRL) …


Effect Of Ported Shroud Casing Treatment Modifications On Operational Range And Limits In A Centrifugal Compressor, Alexander A. Newell Apr 2021

Effect Of Ported Shroud Casing Treatment Modifications On Operational Range And Limits In A Centrifugal Compressor, Alexander A. Newell

Theses and Dissertations

The implementation of a ported shroud casing treatment is often used to extend the operating range of a centrifugal compressor. This work utilizes the STAR-CCM+ CFD package to analyze steady-state, single-passage simulations of a centrifugal compressor with and without a ported shroud to better understand how a ported shroud affects compressor flow physics. Verification and validation of simulations were conducted by comparison of results with a time-accurate full-annulus simulation and experimental data. Four different ported shroud revisions were considered and modeled along the full range of their stable operation, with emphasis placed on the flow limits of choke and stall. …


Cfd Modeling Of Aerial Dispersion Of Pollutants In Urban Environments, Alec Tauer Apr 2021

Cfd Modeling Of Aerial Dispersion Of Pollutants In Urban Environments, Alec Tauer

Master's Theses (2009 -)

Population growth and urbanization across the globe is contributing to anincrease in air pollution emissions. Because air pollution can negatively impact public health there is a desire to model the aerial dispersion of the pollutants in urban environments. Computational Fluid Dynamics (CFD) is becoming an increasingly common tool used to provide high spatial and temporal resolution of the wind flow and pollutant transport in urban environments. In the present study, CFD is utilized to model the aerial pollutant dispersion in three domains: a flat field, an idealized urban environment, and a real urban environment neighboring the Jones’ Island Water Reclamation …


Computational Aerodynamics Of A Wing Mounted Propeller, Sarah Agam Apr 2021

Computational Aerodynamics Of A Wing Mounted Propeller, Sarah Agam

College of Engineering & Technology (Batten) Posters

Computational fluid dynamics (CFD) is a vital component in aerospace engineering. A major use of CFD is analyzing the flow properties to determine outputs like aerodynamic lift and drag over an airfoil or compute engine efficiency. It is more practical to conduct a CFD analysis first before doing experimental work as CFD allows for rapid and diverse testing of propeller shapes at a lower cost. CFD also allows for a wider range of testing parameters; for example, an airfoil can be subjected to steady, unsteady, incompressible, or high velocity flows.

Propellers are extensively used in the aircraft industry, especially in …


Ignition Process And Flame Lift-Off Characteristics Of Dimethyl Ether (Dme) Reacting Spray, Khanh Duc Cung, Ahmed Abdul Moiz, Xiucheng Zhu, Seong-Young Lee Mar 2021

Ignition Process And Flame Lift-Off Characteristics Of Dimethyl Ether (Dme) Reacting Spray, Khanh Duc Cung, Ahmed Abdul Moiz, Xiucheng Zhu, Seong-Young Lee

Michigan Tech Publications

Advanced combustion systems that utilize different combustion modes and alternative fuels have significantly improved combustion performance and emissions compared to conventional diesel or spark-ignited combustions. As an alternative fuel, dimethyl ether (DME) has been receiving much attention as it runs effectively under low-temperature combustion (LTC) modes such as homogeneous charge compression ignition (HCCI) and reactivity control combustion ignition (RCCI). Under compression-ignition (CI), DME can be injected as liquid fuel into a hot chamber, resulting in a diesel-like spray/combustion characteristic. With its high fuel reactivity and unique chemical formula, DME ignites easily but produces almost smokeless combustion. In the current study, …


Development Of A Hybrid Particle Continuum Solver, Anthony J. Gay Mar 2021

Development Of A Hybrid Particle Continuum Solver, Anthony J. Gay

Master's Theses

When simulating complex flows, there are some physical situations that exhibit large fluctuations in particle density such as: planetary reentry, ablation due to arcing, rocket exhaust plumes, etc. When simulating these events, a high level of physical accuracy can be achieved with kinetic methods otherwise known as particle methods. However, this high level of physical accuracy requires large amounts of computation time. If the simulated flow is in collisional equilibrium, then less computationally intensive continuum methods, otherwise known as fluid methods, can be utilized. Hybrid Particle-Continuum (HPC) codes attempt to blend particle and fluid solutions in order to reduce computation …


Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski Jan 2021

Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski

Honors Undergraduate Theses

The FanWing propulsion system is a novel propulsion system which aerodynamically behaves as a hybrid between a helicopter and a fixed wing aircraft, and if the knowledge base with regards to this novel concept can be fully explored, there could be a new class of aircraft developed. In the current research, only 2D CFD studies have been done for the FanWing, hence the 3D lift characteristics of the FanWing have been unknown thus far, at least in the theoretical domain. Therefore, it was proposed to develop a modified Prandtl's Lifting Line Theory numerical solution and a CFD solution, comparing the …


Capture Of Respirable Dust Using Maintenance Free Impingement Screen, Neeraj Kumar Gupta Jan 2021

Capture Of Respirable Dust Using Maintenance Free Impingement Screen, Neeraj Kumar Gupta

Theses and Dissertations--Mining Engineering

Dust produced during mining activities has a detrimental effect on both miners’ health and operations’ safety. There is no definitive treatment for coal miners’ pneumoconiosis (CWP), which is caused by prolonged inhalation of respirable dust. Elevated coal dust concentrations have also been shown to cause several disastrous explosions in the United States and worldwide, resulting in the death of miners and loss of operations. Flooded-bed dust scrubbers are used on all modern-day continuous miners. These devices cleanse the dust-laden air and assist in bringing fresh air towards the mining face. Scrubbers use a multi-layered fibrous screen to capture airborne particles. …


Aerodynamic Characterization Of Bio-Mimicked Pleated Dragonfly Aerofoil, Md Akhtar Khan, Chinmaya Padhy Jan 2021

Aerodynamic Characterization Of Bio-Mimicked Pleated Dragonfly Aerofoil, Md Akhtar Khan, Chinmaya Padhy

International Journal of Aviation, Aeronautics, and Aerospace

The work inspired by the dragonfly wing corrugation positioned at the front wing's radius section lying at 40% of the total wingspan of forewing from the root section. During gliding flight, dragonfly wings presumed to be an ultra-light aerofoil due to its well-defined cross-sectional corrugation. The aerodynamic simulation carried out to understand the aerodynamic performance of a bio-mimetic dragonfly corrugated airfoil at low Reynolds number range of 75000-150000 to explore the potential advantages of pleated airfoils at a varying angle of attack from 0° to 12°. CFD analysis accomplished by using ANSYS Fluent to understand the aerodynamic performance of the …


Computer Modeling Of Solar Thermal System With Underground Storage Tank For Space Heating, Mohammad Yousef Mousa Naser Jan 2021

Computer Modeling Of Solar Thermal System With Underground Storage Tank For Space Heating, Mohammad Yousef Mousa Naser

Browse all Theses and Dissertations

Space heating is required in almost every dwelling across the country for different periods of time. The thermal energy needed to meet a heating demand can be supplied using different conventional and/or renewable technologies. Solar energy is one example of a renewable resource that can be used for supplying heating needs. It can be utilized either by using photovoltaic panels to generate electricity, that in turn can be used to operate heaters, or by using solar thermal panels. Solar thermal panels obtain higher operating efficiencies than photovoltaic panels, but solar energy for heating purposes suffers from a mismatch between supply …


Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott Jan 2021

Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott

International Journal of Aviation, Aeronautics, and Aerospace

Unmanned Aerial Systems (UAS) continue to grow in both popularity and utility within the national airspace system. The use of commercial UAS for civil inspection, specifically that of bridge structures, is becoming commonplace among practitioners and academics alike. The development of an integrated bridge-inspection hazard model provides a way for UAS operators to prepare for and respond to changing environmental conditions that could otherwise prevent a successful UAS flight. The interaction of wind-induced airflow with bridge surfaces creates an aerodynamic wake that can result in hazardous conditions for a UAS platform operating in close proximity. An analysis of this airflow …


Flow And Heat Transfer Characteristics Of Turbulent Swirling Impinging Jets [Thesis], Muhammad Ikhlaq Jan 2021

Flow And Heat Transfer Characteristics Of Turbulent Swirling Impinging Jets [Thesis], Muhammad Ikhlaq

Theses: Doctorates and Masters

Numerous industrial applications rely on impinging jets to impart convective heat and mass transfer in processes ranging from the cooling of electronic devices and gas turbine blades to drying of paper and food products. Conventionally, non-swirling impinging jets have been employed, but some studies have shown that inducing swirl allows better control of uniformity and improved convective fluxes. A better understanding of the underlying physical mechanisms that lead to such behaviour warrants deeper insights into the flow and heat transfer characteristics of impinging jets, both swirling and non-swirling. Whilst important to achieve, the flow field of an impinging jet is …