Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

3D printing

Discipline
Institution
Publication
Publication Type
File Type

Articles 1 - 30 of 37

Full-Text Articles in Engineering

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari Dec 2021

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari

Electronic Theses and Dissertations

Extrusion-based 3D printing of thermoplastic polymer composites manufactures parts that have nonhomogenous, orthotropic, and process-dependent macro-scale material properties. As a part of the dissertation, research works were carried out to: • improve the interlayer mechanical properties and reduce the orthotropy, • use experimentally homogenized orthotropic material properties to numerically model the mechanical behavior of the non-homogenous orthotropic 3D printed parts, • create an efficient numerical thermal model to predict the process-dependent thermal history of the 3D printed part, and • aid the manufacturing process by selecting a suitable set of processing parameters based on a simplified sequentially coupled thermomechanical model. …


Comparative Analysis Of 3d Printed Denture Resins With Traditional Denture Materials At The Micro Level, Aneeza Hussain, Caleb Beckwith, Gaffar Gailani Dec 2021

Comparative Analysis Of 3d Printed Denture Resins With Traditional Denture Materials At The Micro Level, Aneeza Hussain, Caleb Beckwith, Gaffar Gailani

Publications and Research

The aim of this experiment was to evaluate and identify compression strength between traditionally manufactured acrylic dentures and additive manufacturing resin dentures. Specifically, the dentures produced by Uhler Dental, its Reveal line were compared against samples produced on the Formlabs Form 2 SLA, Stereolithography, 3D printer using their Denture Teeth A2 resin to test compression strength to assure they are compatible with the occlusal forces in the oral cavity. Using the ZwickRoell tensile testing machine, it appeared that the acrylic dentures were half as strong as the resin dentures. Then we went ahead to and did a comparative analysis under …


Additive Manufacturing Of Soil Using Bio-Cementation, Christina Childress Dec 2021

Additive Manufacturing Of Soil Using Bio-Cementation, Christina Childress

Graduate Theses and Dissertations

Microbially Induced Calcite Precipitation (MICP) is an emerging soil treatment technique that is proven to increase strength, decrease erosion, reduce liquefaction risk, enhance slope stability, decrease compressibility, decrease swelling potential, and overall create a more competent soil. The benefits and applications of MICP are broad, and this research seeks to broaden them further by developing a single-phase additive manufacturing application with no treatment time delay. This is done by analyzing layering behaviors of five USCS soil classifications (100 % Ottawa sand, sand clay mixtures, and 100% lean clay) which provides insight into process variables such as the solution volume and …


Magnetorheological Cementitious Inks For 4d Printing Of Origami Inspired Auxetic Concrete Elements, Aparna Shashikant Deshmukh Dec 2021

Magnetorheological Cementitious Inks For 4d Printing Of Origami Inspired Auxetic Concrete Elements, Aparna Shashikant Deshmukh

Theses and Dissertations

Existing concrete technology relies on the use of considerable volumes of raw materials, large energy consumption and so associated with severe corresponding environmental impacts. This impact is the driving force for the development of sustainable concrete including a wide range of concrete with supplementary cementitious materials and advanced manufacturing. Recent developments in the field are further inspired by the digital concrete based on 3D printing (3DP) technology which require tailor-made concrete mixtures. The main challenge for 3D printing of concrete is to develop printable ink material, thus this research focuses on characterisation of cementitious materials based on smart materials-materials that …


Characteristics Analysis Of Electrochemical Impedance Spectroscopy (Eis) For Different Electrode Patterns, Shanzida Kabir Dec 2021

Characteristics Analysis Of Electrochemical Impedance Spectroscopy (Eis) For Different Electrode Patterns, Shanzida Kabir

Theses and Dissertations

Electrochemical impedance spectroscopy (EIS) is a rapidly developing technique used in characterizing materials and interfaces. Using equivalent circuits as models can determine the electrical properties of heterogeneous systems like membranes or electrolytes. Different electrochemical processes like the electron transfer rate of a specific reaction or the capacitive behavior of the system, or even the diffusion-limited response can coincide. EIS is applicable to determine different electrochemical processes that can happen simultaneously. The purpose of this research is to find the optimal operating range for other AC electrokinetic mechanisms. Analysis of EIS can be helpful in both fundamental examinations of electrokinetic transport …


Materials And Process Design For Ceramic Fused Filament Fabrication (Cf3) Of Hydroxyapatite., Kavish Sudan Dec 2021

Materials And Process Design For Ceramic Fused Filament Fabrication (Cf3) Of Hydroxyapatite., Kavish Sudan

Electronic Theses and Dissertations

Ceramic fused filament fabrication (CF3) enables the fabrication of highly customizable ceramic parts at relatively lower costs compared to other AM technologies. Advanced ceramics, having specific or niche applications, call for a high level of accuracy to meet the performance requirements. For achieving the desired level of accuracy in any manufacturing process, it is important to know the effect of involved parameters at different stages of fabrication. CF3 has been around for a while but there has been a severe lack of literature dealing with understanding the effect of process parameters on the final part properties. In this study, Hydroxyapatite …


Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson Dec 2021

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson

Doctoral Dissertations

Fused Deposition Modeling (FDM) can be purchased for under five hundred dollars. The availability of these inexpensive systems has created a large hobbyist (or maker) community. For makers, FDM printing is used numerous uses.

With the onset of the COVID-19 pandemic, the needs for Personal Protective Equipment (PPE) skyrocketed. COVID-19 mitigation strategies such as social distancing, businesses closures, and shipping delays created significant supply shortfalls. The maker community stepped in to fill gaps in PPE supplies.

In the case of 3DP, optimization remains the domain of commercial entities. Optimization is, at best, ad-hoc for makers. With the need to PPE …


Experimental Investigation Of Additive Manufacturing Of Continuous Carbon Fiber Composites With Multifunctional Electro-Tensile Properties, Ritesh Ghimire, Frank W. Liou Nov 2021

Experimental Investigation Of Additive Manufacturing Of Continuous Carbon Fiber Composites With Multifunctional Electro-Tensile Properties, Ritesh Ghimire, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Manufacturing processes for monofunctional and multifunctional materials vary depending on the design optimization. Multifunctional continuous carbon fiber composites provide great potential in achieving coupled structural and electrical properties for their applications in aircraft, unmanned aircraft systems, and spacecraft. Proper optimization of tensile and electrical properties offers benefits early in the design and continuous operational safety phases to obtain coupled multifunctional properties. In this paper, fused filament fabrication additive manufacturing (AM) technique was used to fabricate continuous carbon fiber solid laminated composites test coupons. The proposed new method characterizes the electrical conductivity's coupled effects on the tensile properties, including the failure …


Fracturing Mechanism Of Rock-Like Specimens With Different Joint Densities Based On Dic Technology, Fei-Fei Qi, Ke Zhang, Jian-Bin Xie Oct 2021

Fracturing Mechanism Of Rock-Like Specimens With Different Joint Densities Based On Dic Technology, Fei-Fei Qi, Ke Zhang, Jian-Bin Xie

Rock and Soil Mechanics

In order to study the influence of joint density on the strength characteristics and failure modes of rock mass, the rock-like specimens with different joint densities were prepared by using 3D sand printing, with the quartz sand and furan resin being employed as the printing materials. The uniaxial compression test was performed on the 3D sand printed specimens, and the digital image correlation (DIC) method was used as a non-contact technique to monitor the full-field deformation. The crack initiation, propagation and coalescence behaviors were quantitatively analyzed from the micromechanics point of view. The results show that the shape of stress-strain …


3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown Oct 2021

3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown

Chemistry Faculty Publications

The past four decades have brought significant and increasingly rapid changes to the world of instrument design, fabrication, and availability due to the emergence of 3D printing, open-source code and equipment, and low-cost electronics. These, along with other technological advances represent a nexus in time ripe for the wide-spread production and availability of low-cost sophisticated scientific equipment. To that end, the design of a 3D printable and open-source, modular spectrometer is described. This specific instrument is distinctly different from others that have been reported in recent years in that it was designed outside of the “black box” paradigm of …


Coupled Flexural‐Electrical Evaluation Of Additively Manufactured Multifunctional Composites At Ambient Temperature, Ritesh Ghimire, Frank W. Liou Oct 2021

Coupled Flexural‐Electrical Evaluation Of Additively Manufactured Multifunctional Composites At Ambient Temperature, Ritesh Ghimire, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multifunctional composites offer a higher strength to weight ratio, electrical properties, etc., thereby providing possible solutions for replacing the physical electrical wirings in aircraft. The lack of research on the coupled multifunctional characterization of 3D printed composites flexural-electrical properties is the main reason for its unsuitability in aerospace applications. The proposed method evaluates multifunctional flexural‐electrical properties of 3D printed multifunctional carbon fiber composites. Traditional methods for conducting structural and electrical analyses for aircraft certification do not accommodate new technologies that are not yet proven. Such technologies are additive manufacturing (AM) techniques, multifunctional composite structures, and the certification requirements for 3D …


Exploring Fused Deposition Modeling (Fdm) Three-Dimensional Printing Tablet Design Options For Pharmaceutical Dosage Forms, Guluzar Gorkem Buyukgoz Aug 2021

Exploring Fused Deposition Modeling (Fdm) Three-Dimensional Printing Tablet Design Options For Pharmaceutical Dosage Forms, Guluzar Gorkem Buyukgoz

Dissertations

This dissertation examines the use of Fused Deposition Modeling (FDM) based three-dimensional (3D) printing approach for developing patient-specific dosage forms and addressing related technical challenges in such drug delivery systems. The first main objective is to explore pharmaceutical tablet design options using novel FDM 3D printing technology as the drug delivery platform such that drug form and tablet properties are tailored by considering patient age-specific formulations and dissolution control. Of the five different design options, two proposed options meet the main objective of providing similar drug release, whereas the popular option of fixed drug concentration but differing tablet size could …


3d Printing Technology Applied In Lithium Metal Batteries: From Liquid To Solid., Xuejie Gao Aug 2021

3d Printing Technology Applied In Lithium Metal Batteries: From Liquid To Solid., Xuejie Gao

Electronic Thesis and Dissertation Repository

Li-metal batteries are strongly considered to be one of the most promising candidates for high energy density energy storage devices in our modern society. However, the state-of-the-art Limetal batteries are still limited by several challenges including 1) low energy/power density; 2) Li dendrite growth; 3) low coulombic efficiency, and 4) safety concerns within the liquid electrolyte. This thesis mainly focuses on addressing these challenges by using a 3D printing technique to realize high energy/power density Li-metal batteries.

A self-standing high areal energy density cathode for Li-S battery was developed by the 3D printing method in the first part. The optimized …


Highly Integrated And Miniaturized 3d Printed Serial Dilution Microfluidic Devices For Dose-Response Assays, Jose Luis Sanchez Noriega Aug 2021

Highly Integrated And Miniaturized 3d Printed Serial Dilution Microfluidic Devices For Dose-Response Assays, Jose Luis Sanchez Noriega

Theses and Dissertations

The ability to generate a range of concentrations of various solutions rapidly and conveniently is an ongoing need in biotechnology. In this thesis we demonstrate how we took advantage of the full process control afforded by our recent custom high resolution 3D printer and resin advances to realize highly integrated and miniaturized microfluidic components for simultaneous on-chip serial dilution for dose-response assays. With judicious selection of mixed layer thicknesses and pixel-by-pixel dose control, we show that the diameter of 3D printed membrane valves can be reduced from 300 µm to 46 µm. We further introduce an entirely new kind of …


Modeling The Effect Of In Situ Nozzle-Integrated Compression Rolling On The Mechanical And Fracture Behavior Of Fused Filament Fabrication (Fff) 3d Printed Parts, Momen Mohammad Qasaimeh Aug 2021

Modeling The Effect Of In Situ Nozzle-Integrated Compression Rolling On The Mechanical And Fracture Behavior Of Fused Filament Fabrication (Fff) 3d Printed Parts, Momen Mohammad Qasaimeh

Mechanical and Aerospace Engineering Dissertations

Fused filament fabrication (FFF) is one of the most common additive manufacturing/3D printing techniques where continuously extruded semi-molten filaments are deposited in a layer-by-layer manner. The quality of the manufactured part depends on some major factors such as filament-filament contact and adhesion as well as the void fraction. Filament to filament adhesion affects the part strength under transverse load. In our earlier work, we studied the effect of in situ ball rolling on the thermal and mechanical properties of the printed parts. It was found that when printing/rolling parameters are correctly tuned and in situ compression rolling is appropriately applied …


Pseudo-Ductile 3d Printed Fiber Reinforced Polymer Composites, Shreya Vemuganti Jul 2021

Pseudo-Ductile 3d Printed Fiber Reinforced Polymer Composites, Shreya Vemuganti

Civil Engineering ETDs

The use of fiber-reinforced polymer (FRP) composite materials is continuously growing in civil infrastructure owing to its high strength, low weight, and manufacturing flexibility. However, FRP is characterized by sudden failure and lacks ductility. When used in construction, gradual failure of FRP components is desired to avoid catastrophic structural collapse. Due to its mechanical orthotropy, the behavior of FRP relies significantly on fiber orientation and stacking sequence. In this research proposal, investigations showed that novel multi-angled glass fiber reinforced polymer (GFRP) composites with varying fiber orientation angles, stacking sequence, and thickness of laminas can be designed and fabricated using 3D …


3d Printed Polypyrrole Scaffolds For Ph Dependent Drug Delivery With Applications In Bone Regeneration, Matthew T. Lawrence Jun 2021

3d Printed Polypyrrole Scaffolds For Ph Dependent Drug Delivery With Applications In Bone Regeneration, Matthew T. Lawrence

Electronic Thesis and Dissertation Repository

Areas of large bone loss are typically healed using autologous bone grafts, seen as the gold standard of care. These materials have a complication rate of 10–40% during harvesting and are limited by the quantity available; therefore the use of 3D printed polymer scaffolds as bone graft alternatives are proposed. Polypyrrole (PPy) is a biocompatible electroactive polymer that has metal-like electrical properties that can be harnessed to hold and release charged drug molecules, triggered by a change in pH. pH fluctuations are seen inside the human body in areas of bone regrowth, which would act as the triggering mechanism for …


Flow Visualization Of Bolus Microcapsule Delivery Through 3d Printed Microneedles, Sophie Quisling, Leana Vestal, Alexis Enstrom Jun 2021

Flow Visualization Of Bolus Microcapsule Delivery Through 3d Printed Microneedles, Sophie Quisling, Leana Vestal, Alexis Enstrom

Bioengineering Senior Theses

Microneedle arrays are an emerging technology that offers a novel drug delivery system to treat a variety of skin wounds and diseases. The needles deliver therapeutics to the epidermis layer of the skin and therefore establish advantageous qualities over the standard hypodermic needle as they are non-invasive, efficient in biologic absorption, and can be self-administered. This project investigates a custom 3D-printed hollow microneedle device created by a Santa Clara University Senior Design team in 2018 for microencapsulated cell extrusion to be applied for accelerated wound healing. The goal of our project is to operate in the therapeutic range for flowrate …


Blds Pressure Belt, Hailey Earnest, Sean Casteel, Benjamin Bons, Biren Rama Jun 2021

Blds Pressure Belt, Hailey Earnest, Sean Casteel, Benjamin Bons, Biren Rama

Mechanical Engineering

Dr. Westphal has a Boundary Layer Data System (BLDS) that is used to take pressure measurements on the surface of the aircraft. Our team has created a design and manufacturing method for producing the corresponding pressure belt that attaches to Dr. Westphal's system to obtain pressure data.


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


3d Printing Of High Viscosity Fluids And Its Application In 3d Printing Of Prosthetic Teeth., Abhilash Aditya May 2021

3d Printing Of High Viscosity Fluids And Its Application In 3d Printing Of Prosthetic Teeth., Abhilash Aditya

Open Access Theses & Dissertations

The advancement in technology has brought forward non-conventional manufacturing methods that are efficient and advantageous for specific applications. 3D printing is one such outcome, whose applications stretch from biomedical applications to daily products. 3D printing is a rapidly growing technology, and innovative research developments have proven versatility in creating physical objects. Simplification and constant improvement in Fused Deposition Modeling (FDM) operation result from decades of research. However, 3D printing is material-specific and contributes to shortcomings in the technology. The build-material dictates the extrusion parameters, including the material discharge rate and head speed for a continuous flow. Customization being the prime …


Effects Of Process Parameters And Meso-Structures On Dissipative Properties Of Additively Manufactured Structures, Peter Berube May 2021

Effects Of Process Parameters And Meso-Structures On Dissipative Properties Of Additively Manufactured Structures, Peter Berube

Honors College

With approximately 5.9 million vehicular collisions in the United States per year, the ability of a vehicle to absorb energy during a collision is critical to reducing the likelihood and severity of injuries. A primary means to absorb energy during a collision is a crush tube, which is a predominantly-prismatic-shaped, metallic structure located at the front or rear of a vehicle intended to absorb energy by progressively buckling in addition to dissipating energy, crush tubes must be light weight to reduce vehicular green-house gas emissions, resilient to fatigue, resilient to environmental exposure, and economically feasible to manufacture. Historically, these competing …


3d Printable And Computational Models Of The Bone Marrow Mechanical Environment, Alexander Regner May 2021

3d Printable And Computational Models Of The Bone Marrow Mechanical Environment, Alexander Regner

Boise State University Theses and Dissertations

Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in part regulated by mesenchymal stem cells (MSCs). We reported that daily low intensity vibration (LIV) restores MSC proliferation in senescence and simulated microgravity models, suggesting reduced mechanical signal delivery to MSCs likely contributes to declining bone mechanoresponse. To this end, we have developed a 3D bone marrow analog which controls trabecular geometry, marrow mechanics and external stimuli.

Finite element (FE) models of hydrogels, representing bone marrow, were generated using instantaneous compression (1000% strain/s, 20% strain) and relaxation experiments (100s) of both gelatin and hyaluronin-based hydrogels. …


Investigation On Microstructure And Mechanical Properties Of Porous Structures Processed By Laser Powder Bed Fusion, Samarth Ramachandra May 2021

Investigation On Microstructure And Mechanical Properties Of Porous Structures Processed By Laser Powder Bed Fusion, Samarth Ramachandra

Mechanical and Aerospace Engineering Theses

Inconel 718 (i.e., IN718) is a prominent nickel-based, precipitation-hardening superalloy which exhibits exceptionally stable mechanical and corrosion resistant properties, even at temperature range of 650ºC to 700ºC, making it suitable for a wide range of applications such as aerospace, nuclear reactors, tooling, turbines, oil and gas applications. The high toughness and work hardening offered by this superalloy, however, greatly limits the choice of machinability. The presence of low levels of aluminum permits good weldability which further allows the use of laser-based additive manufacturing (AM) to efficiently fabricate IN718 parts without the limitations associated with conventional manufacturing methods. Thanks to AM …


Investigation Of The Microstructural And Mechanical Properties Of Selectively Laser Melted In718 Overhangs Fabricated Without Support Structures, Manjunath Hanumantha May 2021

Investigation Of The Microstructural And Mechanical Properties Of Selectively Laser Melted In718 Overhangs Fabricated Without Support Structures, Manjunath Hanumantha

Mechanical and Aerospace Engineering Theses

Additive manufacturing is a new manufacturing technology that allows for extreme design freedom as well as the simultaneous production of many parts with high complexities. IN718 is a high-strength, corrosion-resistant super alloy of nickel and chromium. It is ideal for high-end applications such as rocket nozzles and turbines because it can handle exceptionally high pressure and heat. Because of its high stiffness qualities, conventional manufacturing of complex IN718 geometries is challenging. Various fabrication techniques have been developed, and this study focuses on selective laser melting (SLM) because of its potential to produce near-perfect parts at a low cost when working …


Theory And Application Of Dielectric Rod Antennas And Arrays, Gabriel Saffold Apr 2021

Theory And Application Of Dielectric Rod Antennas And Arrays, Gabriel Saffold

USF Tampa Graduate Theses and Dissertations

Dielectric rods have been used for many years as waveguides and radiators. Their low loss as a transmission line and tendency to radiate at discontinuities have proven useful in applications ranging from fiber optic cables to naval fire control radar. Although this technology is well es- tablished, advances in additive manufacturing techniques and associated materials combined with the ubiquity of wireless communications and their shift to higher frequencies have generated re- newed interest in dielectric rods. Dielectric rod antennas have moderate gain and less conductive loss at higher frequencies. Similar to other surface wave antennas, they can achieve broadband performance.This …


Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce Apr 2021

Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce

Michigan Tech Publications

Historically, open source agriculture (OSA) was based on grassroots technology generally manufactured by hand tools or with manual machining. The rise of distributed digital manufacturing provides an opportunity for much more rapid lateral scaling of open source appropriate technologies for agriculture. However, the most mature distributed manufacturing area is plastic, which has limited use for many OSA applications. To overcome this limitation with design, this study reports on of a completely 3D-printable planetary roller screw linear actuator. The device is designed as a parametric script-based computer aided design (CAD) package to allow for the easy adaption for a number of …


Study On The Fracture Mechanism Of 3d-Printed-Joint Specimens Based On Dic Technology, Ai-Bing Jin, Shu-Liang Wang, Ben-Xin Wang, Hao Sun, Yi-Qing Zhao Mar 2021

Study On The Fracture Mechanism Of 3d-Printed-Joint Specimens Based On Dic Technology, Ai-Bing Jin, Shu-Liang Wang, Ben-Xin Wang, Hao Sun, Yi-Qing Zhao

Rock and Soil Mechanics

In order to accurately characterize the deformation and failure modes of prefabricated jointed rocks with different angles under uniaxial compression, a joint model based on 3D printing technology was used to simulate the structural surface in the rock mass. Rock specimens with precast joints with different angles were obtained by pouring cement mortar, and a uniaxial compression test was performed. At the same time, digital image correlation (DIC) technology was used to observe and analyze the process of crack formation, propagation, and penetration in the test specimen. The results showed that as the angle of prefabricated joints increased from 0° …


Decision Model For Additive Versus Conventional Construction In Remote Locations, Matthew R. Nicholson Mar 2021

Decision Model For Additive Versus Conventional Construction In Remote Locations, Matthew R. Nicholson

Theses and Dissertations

Additive construction is a potential game changing innovative alternative to conventional methods with regards to structural integrity, timeliness, and waste reduction, especially in remote locations. While there have been numerous studies into the material science, additive construction will not be a viable alternative until a cost analysis is performed. This paper details the cost elements for both methods. Breaking down the key variables of material, logistics and transportation, and labor costs garner a better understanding of the cost difference between the two construction methods.


Study Of Recyclable And Repairable Dynamic Covalent Polymers For Sustainable 3d Printing Development, Mingyue Zheng Feb 2021

Study Of Recyclable And Repairable Dynamic Covalent Polymers For Sustainable 3d Printing Development, Mingyue Zheng

Electronic Thesis and Dissertation Repository

3D printing technology with valuable features, including cost-saving, easy access, and unlimited structure design, has attracted significant attention and been employed for production use. This technology has also been considered as a sustainable manufacturing method and quickly developed in recent years. However, the development of sustainable 3D printing is still facing challenges, especially in waste management. Thanks to the flexibility of 3D printing and diversified printing mechanisms, the big step forward can be approachable by the transformation from materials. This dissertation presents a variety of strategies designed for sustainable 3D printing development based on the combination of dynamic covalent chemistry …