Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

University of Tennessee, Knoxville

Discipline
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 143

Full-Text Articles in Engineering

Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp Dec 2021

Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp

Doctoral Dissertations

Preceramic polymers are organosilicon polymers that, when pyrolyzed to above 1000°C, convert from a polymer to an amorphous ceramic. These polymers have been used for fiber spinning, polymer infiltration, and casting of materials but have recently gained interest for use as the feedstock material for additive manufacturing techniques. This work explores preceramic polymers being used for direct-ink writing (an additive manufacturing method) and many of the issues that occur with the polymers during curing and pyrolysis.

The first chapter of this dissertation provides a review of preceramic polymers, while the second and third chapters focus on the development of inks …


Sustainable Underground Reactive Barrier To Attenuate Contaminants From Agricultural Drainage, Yuchuan Fan Dec 2021

Sustainable Underground Reactive Barrier To Attenuate Contaminants From Agricultural Drainage, Yuchuan Fan

Doctoral Dissertations

Denitrifying bioreactor (DNBR) has become a popular edge-of-field practice applied to reduce nitrate over the Mississippi river and to prevent a downstream hypoxic zone occurring at the Gulf of Mexico. Despite widespread field and laboratory studies, fewer investigations have been directed toward a systematic means of evaluating the nitrate removal performance achieved by various filling materials, abiotic factors, and other critical parameters. Our ultimate goal is to improve the nitrate removal by choosing the optimum fill materials and operate under optimal conditions, meanwhile, modeling the DNBR by critical variables. This study begins by establishing a global database. Forty filling materials …


Towards Modeling Projectile Penetration In Dry And Multiphase Granular Materials, Mohmad Mohsin Thakur Dec 2021

Towards Modeling Projectile Penetration In Dry And Multiphase Granular Materials, Mohmad Mohsin Thakur

Doctoral Dissertations

The present work aims at developing and validating numerical modeling strategies in granular materials impacted by a projectile. The focus is on two regions: (a) near-field: region near the tip and along the path of a projectile where comminution of grains is significant, (b) intermediate-field: region far from the projectile where grain-scale interactions are important but stresses are not high enough to cause crushing of the grains.

A novel framework has been introduced and validated wherein particle shape captured using X-ray CT imaging was incorporated in FEM simulations using shell elements for simulating triaxial boundary value problems. The results indicate …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


Quantifying And Reversing Compensatory Movements By Persons Post-Stroke In The Ambient Setting, Aaron Miller Dec 2021

Quantifying And Reversing Compensatory Movements By Persons Post-Stroke In The Ambient Setting, Aaron Miller

Doctoral Dissertations

Nearly 800,000 people in the United States suffer stroke annually. Following the onset of stroke, survivors will exhibit deficits, such as hemiplegia, which will limit their function and ability to perform activities of daily living (ADLs). In order to regain independence, many stroke survivors will employ maladaptive compensatory strategies to help with the completion of tasks. Compensation is generally defined as any performance of a task that is different than the way it may have been performed before the onset of a neurodegenerative disorder. While for some severely impaired individuals, compensation may be necessary, for most these maladaptive strategies ultimately …


Modeling And Control Of Power Electronics Interfaced Load For Transmission Power Network Analysis, Shuyao Wang Dec 2021

Modeling And Control Of Power Electronics Interfaced Load For Transmission Power Network Analysis, Shuyao Wang

Doctoral Dissertations

The penetration level of power electronics (PE) interfaced loads has been gradually increasing in recent years. It is beneficial to equip the electric load with a PE interface since it allows for more advanced control of the load performance. Furthermore, the increasing penetration of PE interfaced loads will bring both challenges and opportunities to power network resilience and reliability.

However, the lack of modeling and control design for PE interfaced load units in the transmission-level power network analysis, especially for these high-penetrated high-power-rating load applications, limits the accuracy of evaluating the dynamic performance and stability status of the power network. …


Federated Agentless Detection Of Endpoints Using Behavioral And Characteristic Modeling, Hansaka Angel Dias Edirisinghe Kodituwakku Dec 2021

Federated Agentless Detection Of Endpoints Using Behavioral And Characteristic Modeling, Hansaka Angel Dias Edirisinghe Kodituwakku

Doctoral Dissertations

During the past two decades computer networks and security have evolved that, even though we use the same TCP/IP stack, network traffic behaviors and security needs have significantly changed. To secure modern computer networks, complete and accurate data must be gathered in a structured manner pertaining to the network and endpoint behavior. Security operations teams struggle to keep up with the ever-increasing number of devices and network attacks daily. Often the security aspect of networks gets managed reactively instead of providing proactive protection. Data collected at the backbone are becoming inadequate during security incidents. Incident response teams require data that …


Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson Dec 2021

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson

Doctoral Dissertations

Fused Deposition Modeling (FDM) can be purchased for under five hundred dollars. The availability of these inexpensive systems has created a large hobbyist (or maker) community. For makers, FDM printing is used numerous uses.

With the onset of the COVID-19 pandemic, the needs for Personal Protective Equipment (PPE) skyrocketed. COVID-19 mitigation strategies such as social distancing, businesses closures, and shipping delays created significant supply shortfalls. The maker community stepped in to fill gaps in PPE supplies.

In the case of 3DP, optimization remains the domain of commercial entities. Optimization is, at best, ad-hoc for makers. With the need to PPE …


Forecasting Nigeria's Electricity Demand And Energy Efficiency Potential Under Climate Uncertainty, Olawale Olabisi Dec 2021

Forecasting Nigeria's Electricity Demand And Energy Efficiency Potential Under Climate Uncertainty, Olawale Olabisi

Doctoral Dissertations

The increasing population and socio-economic growth of Nigeria, coupled with the current, unmet electricity demand, requires the need for power supply facilities expansion. Of all Nigeria’s electricity consumption by sector, the residential sector is the largest and growing at a very fast rate. To meet this growing demand, an accurate estimation of the demand into the future that will guide policy makers to adequately plan for the expansion of electricity supply and distribution, and energy efficiency standards and labeling must be made. To achieve this, a residential electricity demand forecast model that can correctly predict future demand and guide the …


Nuclear Fuel Materials Under Extremes: Redox Behavior And Resulting Defect Structure, William Cureton Dec 2021

Nuclear Fuel Materials Under Extremes: Redox Behavior And Resulting Defect Structure, William Cureton

Doctoral Dissertations

Oxide nuclear fuel materials and analogues are often subject to complex structural and chemical changes when exposed to extreme environments. For example, oxidation and buildup of fission products cause changes to the local- and long-range structure as well as the chemistry and stoichiometry of UO2 during operation in light water reactors. Highly ionizing energetic fission fragments have been shown to cause redox effects and associated defect structures in oxide nuclear fuel-type materials. The underlying mechanisms that lead to defect structures produced in a wider range of nuclear fuel material compositions and microstructures is not well understood.

This research project …


Profile-Guided Data Management For Heterogeneous Memory Systems, Matthew B. Olson Dec 2021

Profile-Guided Data Management For Heterogeneous Memory Systems, Matthew B. Olson

Doctoral Dissertations

Market forces and technological constraints have led to a gap between CPU and memory performance that has widened for decades. While processor scaling has plateaued in recent years, this gap persists and is not expected to diminish for the foreseeable future. This discrepancy presents a host of challenges for scaling application performance, which have only been exacerbated in recent years, as increasing demands for fast and effective data analytics are driving memory energy, bandwidth, and capacity requirements to new heights.

To address these trends, hardware architects have introduced a plethora of memory technologies. For example, most modern memory systems include …


Exploring Potential Impacts Of Connected And Automated Vehicle Technologies, Iman Mahdinia Dec 2021

Exploring Potential Impacts Of Connected And Automated Vehicle Technologies, Iman Mahdinia

Doctoral Dissertations

Connected and automated vehicle technologies have the potential to significantly improve transportation system performance. In particular, advanced driver-assistance systems (ADAS), such as adaptive cruise control (ACC), cooperative adaptive cruise control (CACC), pedestrian crash prevention (PCP) system, and advanced automated collision notification (ACN) system may lead to substantial improvements in performance by decreasing driver inputs and taking over control of the vehicle. The main questions that might arise are 1) how we can quantify the potential environmental and safety impacts of these technologies and 2) what the potential for these technologies is to address some of the important transportation-related problems. Due …


A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard Dec 2021

A Multi-Scale Homogenization Scheme For Modeling Anisotropic Material’S Elastic And Failure Response, Justin Matthew Garrard

Doctoral Dissertations

The effect of small-scale random defects such as microcracks or inclusions are critical to the prediction of material failure, yet including these in a fracture simulation can be difficult to perform efficiently. Typically, work has focused on implementing these through a statistical characterization of the micro- or meso-scales. This characterization has traditionally focused on the spatial distribution of faults, assuming the material is purely isotropic. At the macro-scale, many materials can be assumed to be fully isotropic and homogeneous, but at the small scale may show significant anisotropy or heterogeneity. Other materials may be effectively anisotropic in bulk, such as …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel Dec 2021

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel

Doctoral Dissertations

Matrix normalizations are a critical component of mathematically rigorous aerodynamics analysis, especially where kinematic and thermodynamic behaviors are of interest. Here, a matrix normalization based around the entropy of a perturbation is derived according to the principles of mathematical entropy analysis and using a general definition of entropy amendable to physical phenomena such as thermal nonequilibrium and caloric and thermal imperfection. This normalization is shown to be closely related to the contemporary Chu energy normalization, expanding the range of validity of that normalization and clarifying the details of its interpretation. This relationship provides a basis for deriving other normalizations. Entropy …


Design Considerations For Gan-Based Photovoltaic Inverter And Solid-State Circuit Breaker, Zhe Yang Dec 2021

Design Considerations For Gan-Based Photovoltaic Inverter And Solid-State Circuit Breaker, Zhe Yang

Doctoral Dissertations

Featuring low specific on-state resistance, high switching speed, and zero reverse recovery current, Gallium Nitride (GaN) transistor is becoming one of the most promising devices for power electronic applications. This dissertation presents some design considerations for photovoltaic (PV) inverters and solid-state circuit breakers (SSCBs) using GaN devices. Several related challenges and solutions will be discussed in this dissertation.

First, the filter design for full bridge PV inverter is discussed, which includes the design and optimization of individual inductor and overall power filter. The inductor design takes the fringing effect into account, and achieves optimal design with simple algorithm. Then, the …


A Connectivity Framework To Explore The Role Of Anthropogenic Activity And Climate On The Propagation Of Water And Sediment At The Catchment Scale, Christos Giannopoulos Dec 2021

A Connectivity Framework To Explore The Role Of Anthropogenic Activity And Climate On The Propagation Of Water And Sediment At The Catchment Scale, Christos Giannopoulos

Doctoral Dissertations

Anthropogenic disturbance in intensively managed landscapes (IMLs) has dramatically altered critical zone processes, resulting in fundamental changes in material fluxes. Mitigating the negative effects of anthropogenic disturbance and making informed decisions for optimal placement and assessment of best management practices (BMPs) requires fundamental understanding of how different practices affect the connectivity or lack thereof of governing transport processes and resulting material fluxes across different landscape compartments within the hillslope-channel continuum of IMLs. However, there are no models operating at the event timescale that can accurately predict material flux transport from the hillslope to the catchment scale capturing the spatial and …


Switching Performance Evaluation, Design, And Test Of A Robust 10 Kv Sic Mosfet Based Phase Leg For Modular Medium Voltage Converters, Xingxuan Huang Dec 2021

Switching Performance Evaluation, Design, And Test Of A Robust 10 Kv Sic Mosfet Based Phase Leg For Modular Medium Voltage Converters, Xingxuan Huang

Doctoral Dissertations

10 kV SiC MOSFETs are one of the most promising power semiconductor devices for next-generation high-performance modular medium voltage (MV) converters. With extraordinary device characteristics, 10 kV SiC MOSFETs also bring a variety of challenges in the design and test of MV converters. To tackle these inherent challenges, this dissertation focuses on a robust half bridge (HB) phase leg based on 10 kV SiC MOSFETs for modular MV converters. A baseline design and test of the phase leg is established first as the foundation of the research in this dissertation.

Thorough evaluation of 10 kV SiC MOSFETs’ switching performance in …


Qualitative And Quantitative Improvements For Positron Emission Tomography Using Different Motion Correction Methodologies, Tasmia Rahman Tumpa Dec 2021

Qualitative And Quantitative Improvements For Positron Emission Tomography Using Different Motion Correction Methodologies, Tasmia Rahman Tumpa

Doctoral Dissertations

Positron Emission Tomography (PET) data suffers from low image quality and quantitative accuracy due to different kinds of motion of patients during imaging. Hardware-based motion correction is currently the standard; however, is limited by several constraints, the most important of which is retroactive data correction. Data-driven techniques to perform motion correction in this regard are active areas of research. The motivation behind this work lies in developing a complete data-driven approach to address both motion detection and correction. The work first presents an algorithm based on the positron emission particle tracking (PEPT) technique and makes use of time-of-flight (TOF) information …


A Multilevel Study Of Driving Behavior And System Performance- Harnessing Large-Scale Naturalistic Driving And Conventional Safety Data, Amin Mohammadnazar Dec 2021

A Multilevel Study Of Driving Behavior And System Performance- Harnessing Large-Scale Naturalistic Driving And Conventional Safety Data, Amin Mohammadnazar

Doctoral Dissertations

The performance of a transportation system highly depends on the drivers’ behavior because driving behavior is one of the main causes of traffic accidents and one of the key factors in fuel consumption and vehicle emissions studies. Specifically, the focus of this dissertation is on aggressive driving who not only put their selves and others at risk but also contribute more to greenhouse gas emissions. Recently, the development of advanced sensors, connected vehicles (CVs), location-based services (LBS) provided unprecedented access to new high-resolution microscopic-level data which can be used to evaluate and monitor instantaneous driving behavior and safety performance of …


Modeling And Control Of A 7-Level Switched Capacitor Rectifier For Wireless Power Transfer Systems, Spencer Cochran Dec 2021

Modeling And Control Of A 7-Level Switched Capacitor Rectifier For Wireless Power Transfer Systems, Spencer Cochran

Doctoral Dissertations

Wireless power continues to increase in popularity for consumer device charging. Rectifier characteristics like efficiency, compactness, impedance tunability, and harmonic content make the multi-level switched capacitor rectifier (MSC) an exceptional candidate for modern WPT systems. The MSC shares the voltage conversion characteristics of a post-rectification buck-boost topology, reduces waveform distortion via its multi-level modulation scheme, demonstrates tank tunability via the phase control inherent to actively switched rectifiers, and accomplishes all this without a bulky filter inductor. In this work, the MSC WPT system operation is explained, and a loss model is constructed. A prototype system is used to validate the …


Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah Dec 2021

Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah

Doctoral Dissertations

225Ac [Actinium-225] is a promising radionuclide for targeted alpha therapy of cancer. 229Pa can lead to the production of 229Th [Thorium-229] and 225Ac [Actinium-225]. Deuteron bombardment on natural thorium targets has been investigated to measure cross sections of protactinium isotopes. In this work, 229Pa [Protactinium-229] excitation function was measured via deuteron energies up to 50 MeV [Mega electron volt] of thin thorium foils. The irradiation took place at Lawrence Berkeley National Laboratory’s (LBNL) 88-Inch Cyclotron. The target processing and analysis were performed at Oak Ridge National Laboratory (ORNL). The target consisted of 4 thin foils …


Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman Dec 2021

Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman

Doctoral Dissertations

This dissertation presents experimental work that provide a foundation to rationally improve fused filament fabrication (FFF) and immiscible blend compatibilization. Objects generated from additive manufacturing processes, such as FFF, have intrinsic structural weaknesses which include two project specific examples: structural anisotropy and irreversible thermal strain. Due to low adhesion between individual print layers that results in macroscopic defects, the mechanical strength of printed objects when force is applied perpendicular to the build orientation is drastically reduced. In the first dissertation chapter, we present a protocol to produce interlayer covalent bonds by depositing multi-amine additives between individual layers of a print …


Analyses For The Production And Dosimetry Of Adding Uranium-232 As A Tracer To The Uranium Fuel Cycle, Joshua H. Rhodes Dec 2021

Analyses For The Production And Dosimetry Of Adding Uranium-232 As A Tracer To The Uranium Fuel Cycle, Joshua H. Rhodes

Doctoral Dissertations

This dissertation is an examination of the use of uranium-232 as a tracer in nuclear fuel. Decay daughters from 232U, particularly thallium-208, produce high energy gamma rays that, when added to uranium, may increase detectability in case of theft or diversion, but are also hazardous in high quantities. Previous studies of the 232U decay chain are examined. This work will go in to a dosimetry study to determine how hazardous varying levels of 232U are, and how to efficiently produce 232U in sufficient quantities.

A dosimetry study was performed to determine the dose hazards due to …


Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore Dec 2021

Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore

Doctoral Dissertations

The research work focused on examining the interfacial adhesion of unsized, epoxy, and urethane-sized textile grade carbon fiber (TCF) reinforced in different classes of polyurethane (PU) thermoplastic (TPU) and thermoset (TSU) polyurethane (PU) through the structure-property relationship. The Carbon Fiber Technology Facility (CFTF) at Oak Ridge National Laboratory (ORNL) has produced TCF to reduce the cost of commercial-grade carbon fiber. The first part of the research examined the fundamental relationships between (a) soft segment thermoplastic polyurethane (S-TPU), (b) hard segment thermoplastic polyurethane (H-TPU), (c) thermoset polyurethane (TSU) and TCF reinforcement’s molecular behavior at the interface using the surface and thermal …


Radiation Effects On Lithium Indium Diselenide Semiconductors As Neutron Imaging Detectors, Robert M. Golduber Dec 2021

Radiation Effects On Lithium Indium Diselenide Semiconductors As Neutron Imaging Detectors, Robert M. Golduber

Masters Theses

The studies presented in this work aim to improve upon the knowledge base of lithium indium diselenide (LISe) semiconductors to understand how the material behaves in high radiation environments and refine the process of turning it into a neutron detector. LISe has great potential as neutron imaging detector because of the high neutron absorption efficiency of its enriched 6Li component and its ability to discriminate between gamma-rays and neutrons. Its ability to remain functional after being irradiated with large amounts of neutron fluence has been tested and the change in its electro-optical properties with relation to fluence has been …


Increasing Hydrophilicity And Transparency Of Diamond-Like Carbon Thin Films With Dopants For An Anti-Fogging Laparoscope Coating, Anna Bull Dec 2021

Increasing Hydrophilicity And Transparency Of Diamond-Like Carbon Thin Films With Dopants For An Anti-Fogging Laparoscope Coating, Anna Bull

Masters Theses

Laparoscopes are prone to fogging which can lead to a limited field of view during surgical procedures. Current methods of mitigating fogging issues are not efficient or can require costly modification to the laparoscope. Previous studies of diamond-like carbon (DLC) coatings found doping the films improved hydrophilic qualities, suggesting their possible use as antifogging coatings for laparoscopes. For this work, two series of DLC films, doped with either SiO and Al2O3 were investigated.

The biocompatibility, transparency, and stability of these films were assessed through cellular assays, spectrophotometry, and simulated body fluid soaking experiments. Contact angle and surface …


Thermodynamic Analysis Of An Autogenous Pressurization System, Samuel H. Smith Dec 2021

Thermodynamic Analysis Of An Autogenous Pressurization System, Samuel H. Smith

Masters Theses

Pressurized gas feed systems have been vital to spacecraft where a pump-fed design would prove too large, heavy, or complicated to be effective. This project investigates autogenous pressurization – a pressurized feed system where the intentional vaporization of liquid propellant to fill the ever-increasing ullage space with its own warm, low-density gas. Motivation for this research originates from the University of Tennessee Space Institute’s (UTSI) contract with Gloyer-Taylor Laboratories (GTL) to assist the development of an innovative pressurization system.

While other pressurization systems have been studied and used extensively, modeling of an autogenous system is less established. Despite the relative …


Investigation Of The Rupture Initiation And Mechanical Performance Of Alumina Port Covers For Integrated Rocket Ramjet Systems, Haley R. Goldston Dec 2021

Investigation Of The Rupture Initiation And Mechanical Performance Of Alumina Port Covers For Integrated Rocket Ramjet Systems, Haley R. Goldston

Masters Theses

Hypersonic flight is widely considered essential to ensure a competitive defensive capability in the United States. In hypersonic air breathing propulsion, cruise vehicles are a priority research and development area given the ease to which they can be implemented with existing DoD infrastructure. Advancements in ramjet engine systems, including integrated rocket ramjets, play a considerable role in military and space access hypersonic vehicle designs. By design, ramjets cannot produce static thrust. They first need to be brought to operational speeds with the help of a rocket booster. An integrated rocket ramjet (IRR) combines the booster phase and the ramjet phase …


Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin Dec 2021

Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin

Doctoral Dissertations

Ferritic-martensitic steels are attractive candidate materials for fusion and advanced fission reactors primarily due to their low swelling characteristic, attractive thermo-mechanical properties, and the potential for development of nanostructured ferritic alloys. However, significant discrepancies exist regarding the effect of solutes and irradiation temperature on cavity swelling under ion versus neutron irradiation conditions. Several mechanisms have been proposed that may affect cavity swelling, but no general theory or model has received complete acceptance to explain these phenomena.

To better understand the formation of cavities in ferritic steels, we have performed multi-temperature (400-550°C) single-beam and simultaneous dual-beam irradiations (ex-situ and in-situ) on …