Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

A Cathode Support Structure For Use In A Magnetron Oscillator Experiment, Daylon Black, Ryan Harper, Patrick Ward, Jacob Davlin, Omar Bentancourt, Donald Plumlee, Jim Browning Sep 2020

A Cathode Support Structure For Use In A Magnetron Oscillator Experiment, Daylon Black, Ryan Harper, Patrick Ward, Jacob Davlin, Omar Bentancourt, Donald Plumlee, Jim Browning

Electrical and Computer Engineering Faculty Publications and Presentations

A Low Temperature Cofired Ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 Gated Field Emission Array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm x 8 mm) are placed in axial columns of 3 and spaced …


Heavy Lift Drone, Sam Carhart, David Cooper, Luis Gaitan, Michael Kaliterna, Sami Lama, Paul Rogel-Herrera, Yuya Yabe Jun 2020

Heavy Lift Drone, Sam Carhart, David Cooper, Luis Gaitan, Michael Kaliterna, Sami Lama, Paul Rogel-Herrera, Yuya Yabe

Interdisciplinary Design Senior Theses

Despite the rapid rise in the number of drones in the past few years, there has been little work done to produce a drone that is optimized for the FAA' s 55 lb upper takeoff limit. This gap in the market is one that the Heavy Lift Drone (HLD) fills - a light-weight, higher payload capability, and inexpensive drone to be used in commercial applications - most notably irrigation monitoring. The HLD is a contra-rotating hexagonal configuration system featuring two levels of propellers that allow for larger propeller diameter and generate greater lift. After performing extensive finite element analyses and …


Application Of Optimal Switching Using Adaptive Dynamic Programming In Power Electronics, Ataollah Gogani Khiabani May 2020

Application Of Optimal Switching Using Adaptive Dynamic Programming In Power Electronics, Ataollah Gogani Khiabani

Mechanical Engineering Research Theses and Dissertations

In this dissertation, optimal switching in switched systems using adaptive dynamic programming (ADP) is presented. Two applications in power electronics, namely single-phase inverter control and permanent magnet synchronous motor (PMSM) control are studied using ADP. In both applications, the objective of the control problem is to design an optimal switching controller, which is also relatively robust to parameter uncertainties and disturbances in the system. An inverter is used to convert the direct current (DC) voltage to an alternating current (AC) voltage. The control scheme of the single-phase inverter uses a single function approximator, called critic, to evaluate the optimal cost …


Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib May 2020

Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib

Mechanical Engineering Research Theses and Dissertations

In this research, two actuation systems were introduced, inertial and magnetic actuation. In the inertial actuation, the robot used the transfer of momentum to navigate, and this momentum could be generated by spinning masses and wheels. Recent studies in our System Laboratory proved that a wide range of inertially actuated locomotion systems could be generated. This can be achieved by using a family tree approach, starting from a very simple system, and progressively evolving it to more complex ones. The motion diversity of these robots inspired us to extend their locomotion from a macro scale to millimeter and micro scales. …


Optimization Study Of A Combined Wind-Solar Farm For A Specified Demand, Venkat Siddhartha Rama Jan 2020

Optimization Study Of A Combined Wind-Solar Farm For A Specified Demand, Venkat Siddhartha Rama

Browse all Theses and Dissertations

At the present time, using wind and solar energy for producing electricity in the United States is becoming cost competitive. According to Lazard’s 2019 [36] levelized cost of energy (LCOE) analysis of a number of energy sources used for producing electricity in the United States, wind and solar are cheaper than natural gas and coal. While capital, maintenance, operation, and fuel costs are included in LCOE numbers, energy source intermittency is not. Intermittency is an important issue with wind and solar energy sources, but not with natural gas or coal energy sources. Combining wind and solar energy sources into one …


Computational Assessment Of Aortic Valve Function And Mechanics Under Hypertension, Saurav Kadel Jan 2020

Computational Assessment Of Aortic Valve Function And Mechanics Under Hypertension, Saurav Kadel

Browse all Theses and Dissertations

Calcific aortic valve disease (CAVD), the most common valvular heart disorder, is associated with complications such as stroke, heart attack, aortic aneurysm, left ventricular hypertrophy, and ultimately death. While hypertension has been identified as a major risk factor for CAVD, the mechanisms by which it may promote calcification are still unknown. Given the sensitivity of valvular tissue to mechanical stress alterations, the hemodynamic abnormalities linked to hypertension may play a role in the development of CAVD. Further, the effects of hypertension on the left ventricular functionality and coronary flow resistance remain largely uninvestigated. Hence, the objectives of this thesis were …