Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

3D printing

Theses/Dissertations

Discipline
Institution
Publication

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Development Of Novel Inks And Approaches For Printing Tissues And Organs, Shen Ji Dec 2020

Development Of Novel Inks And Approaches For Printing Tissues And Organs, Shen Ji

Dissertations

Tissue engineering is a multidisciplinary field that investigates and develops new methods to repair, regenerate and replace damaged tissues and organs, or to develop biomaterial platforms as in vitro models. Tissue engineering approaches require the fabrication of scaffolds using biomaterials or fabrication of living tissues using cells. As the demands of customized, implantable tissue/organs are increasing and becoming more urgent, conventional scaffold fabrication approaches are difficult to meet the requirements, especially for complex large-scale tissue fabrication. In this regard, three-dimensional (3D) printing attracted more interest over the past decades due to its unrivaled ability to fabricate highly customized tissues or …


Multilayered Transmission Lines, Antennas And Phased Arrays With Structurally Integrated Control Electronics Using Additive Manufacturing, Merve Kacar Dec 2020

Multilayered Transmission Lines, Antennas And Phased Arrays With Structurally Integrated Control Electronics Using Additive Manufacturing, Merve Kacar

USF Tampa Graduate Theses and Dissertations

This dissertation presents high-performance transmission lines, antennas, and phased arrays with novel packaging techniques by harnessing design flexibilities of additive manufacturing (AM). AM enables realizing multilayered RF electronics with complex geometrical structures that are not practical using conventional fabrication methods. Design flexibilities offered by AM as customized dielectric shapes/thicknesses, dielectric properties, metallization on conformal surfaces, and structural packaging are harnessed for multilayered RF applications. Although several works demonstrated the viability of AM for antenna realizations, its capability for addressing the needs of wideband, high radiation efficiency antenna systems packaged with active RF circuit components remains relatively unexplored. The first major …


Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo Dec 2020

Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo

Graduate Theses and Dissertations

With the emergence of Additive Manufacturing (i.e., 3D printing) in construction, new strategically designed shapes can be created to improve load transfer through structural members and foundations. Cross-sections can be optimized to carry load using less material, or even using weaker constituent materials, like soils, which are cheap and abundant. The goal of this research is to investigate the benefits of using cellular patterns which leverage biomimicry in civil engineering applications, since nature has perfectly engineered materials and patterns which carry loads with the least amount of material possible. Most of the periodic cellular work to date has focused on …


Fabrication And Flow Dynamics Analysis Of Micromixer For Lab-On-A-Chip Devices, Md Fazlay Rubby Dec 2020

Fabrication And Flow Dynamics Analysis Of Micromixer For Lab-On-A-Chip Devices, Md Fazlay Rubby

Theses and Dissertations

The miniaturized systems designed for lab-on-a-chip (LOC) technologies are generally implemented with a micro-scale mixer to provide intimate contact between the reagent molecules for interactions and chemical reactions. The exponential increase of research in microfabrication and microfluidic applications highlights the importance of understanding the theory and mechanism that governs mixing at the microscale level. In this study, the fabrication of an active and passive micromixer was discussed. The optimized state of art soft lithography and 3D printing was used as a microfabrication technique. The challenges at different fabrication steps were presented along with the modifications. Microelectrodes were integrated with the …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


3d Printing For Solving Part Obscolescence, Ayman G. Alqarni Sep 2020

3d Printing For Solving Part Obscolescence, Ayman G. Alqarni

Theses and Dissertations

The purpose of this research was to highlight the issue of parts obsolescence and to highlight the possibility of using alternative methods to overcome parts shortage. Specifically, this thesis sought to answer the research question: is the three-dimensional printing technology (3D) an applicable approach to overcome part obsolescence. The research question was answered through data research and survey analysis. Notwithstanding, the diminished manufacturing sources and material shortages (DMSMS) management and other existing approaches, such as forecasting, contracting, and reverse engineering (RE), were discussed briefly in the literature review and profoundly in chapter IV to differentiate among applicable existing solutions toward …


Rational Design Of Cell Configurations For High-Performance Na-O2 Batteries, Xiaoting Lin Aug 2020

Rational Design Of Cell Configurations For High-Performance Na-O2 Batteries, Xiaoting Lin

Electronic Thesis and Dissertation Repository

Na-O2 batteries are considered as the promising candidates for electric vehicles due to their ultrahigh theoretical energy densities. However, state-of-the-art Na-O2 batteries suffer from serious challenges including 1) pore clogging and insufficient O2 transportation within the air electrode; 2) degradation of air electrode, 3) Na dendrite growth; and 4) Na corrosion induced by O2/O2- crossover. This thesis, therefore, focuses on rational design of cell configurations to address these problems and understanding the insight mechanisms.

3D printing of “O2 breathable” air electrodes for Na-O2 batteries were first developed. The unique air electrode …


Possible Self Dynamics Of Community College Students Engaged In 3d Printing In Informal Environments, Lawrence Ralph Nightingale Jr. Aug 2020

Possible Self Dynamics Of Community College Students Engaged In 3d Printing In Informal Environments, Lawrence Ralph Nightingale Jr.

Educational Foundations & Leadership Theses & Dissertations

The overall number of students from diverse backgrounds and women that graduate from community college with degrees in high paying Science Technology Engineering and Mathematics (STEM) disciplines is unacceptably low. The number of opportunities to gain exposure to STEM-based expressions of technology to overcome the dearth of exposure in high school is limited in community college. 3D Printing uses computer-controlled machines to build physical objects one layer at a time starting from the bottom up. The computer-controlled nature of 3D Printing provides a low risk, low cost platform to exercise elements of computer programming and engineering.

This study was a …


Effects Of Corner Radii On Wind Tunnel Testing Of Low-Rise Buildings, Kytin Kwan Jul 2020

Effects Of Corner Radii On Wind Tunnel Testing Of Low-Rise Buildings, Kytin Kwan

Electronic Thesis and Dissertation Repository

Wind effects on buildings are commonly studied by testing 3D printed building models in a wind tunnel. A challenge with 3D printing is that the edges of these models may not be perfectly sharp, but rounded with a radius of curvature, R. It is well known that when edges are significantly rounded, the aerodynamics of the building can be altered (Robertson, 1991; Mahmood 2011), leading to inaccurate predictions of full-scale surface pressures and wind loads. However, there is presently no guidance on model edge radii prescribed in wind tunnel testing standards such as ASCE 49-12. The objective of the present …


Metal Additive Manufacturing For Fixed Dental Prostheses, Mai El Najjar Jun 2020

Metal Additive Manufacturing For Fixed Dental Prostheses, Mai El Najjar

Electronic Thesis and Dissertation Repository

The use of additive manufacturing (AM) in dentistry has gained momentum in recent years. However, high initial costs and uncertainty surrounding the quality of AM products are considered barriers to their use. This research compared dental substructures fabricated by AM versus conventional casting and milling.

Cobalt-chromium alloy rectangular bars and three-unit bridge substructures were fabricated by AM, casting or milling. Bars manufactured by AM exhibited superior flexural strength, shear bond strength of porcelain coating, and Vickers hardness. Bridge substructures fabricated by AM showed similar flexural stiffness to cast, similar flexural loads at failure to milled and cast, and overall accuracy …


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Spectral 3d Reconstruction Based On Macroscopic Oct Imaging, Xingyu Zhou May 2020

Spectral 3d Reconstruction Based On Macroscopic Oct Imaging, Xingyu Zhou

Theses

Various optical technologies have been utilized to improve art conservation by art conservators, such as laser triangulation, stereophotogrammetry, structured light, laser scanner and time of flight sensors. These methods have been deployed to capture the 3D or surface topography information of sculptures and architectures. Optical coherence tomography (OCT) has introduced new imaging methods to study the surface features and subsurface structures of delicate cultural heritage objects. However, despite its higher spatial resolution, the field of view (FOV) of OCT severely limits the size of the scanning area and does not allow macroscopic examination. To solve this issue, we develop and …


Extremely Low Cycle Fatigue Behavior Of Additively Manufactured 17-4ph Stainless Steel, Kaley Collins May 2020

Extremely Low Cycle Fatigue Behavior Of Additively Manufactured 17-4ph Stainless Steel, Kaley Collins

Civil Engineering Undergraduate Honors Theses

Steel structures survive seismic loading thanks to components capable of dissipating large amounts of energy through large deformations. Future optimizations of these components include complex free-form geometries that are difficult to fabricate with traditional casting processes. Additive manufacturing (AM) is an alternative for producing optimized free-form geometries. AM material contains significant differences in microstructural characteristics and mechanical behavior compared to its wrought counterparts. Research has been conducted to understand the effect of microscopic features in the high cycle fatigue (HCF) and low cycle fatigue (LCF) regimes. This study focuses on the behavior of 17-4 Precipitation Hardening (PH) stainless steel in …


Left Atrial Appendage Printing Process, Areli Reyes, Brandon James Mukai, Mia Noelle Von Knorring Mar 2020

Left Atrial Appendage Printing Process, Areli Reyes, Brandon James Mukai, Mia Noelle Von Knorring

Biomedical Engineering

The left atrial appendage senior design team aims to assist in closing off the left atrial appendage that is susceptible to coagulation due to non-valvular atrial fibrillation. Coagulation in the left atrial appendage (LAA) can be life threatening as it can lead to a stroke. Dr. Chris Porterfield performs a procedure that uses the Boston Scientific Watchman to close the appendage. He finds that sizing the Watchman properly is difficult with limited visuals from live CT scans. He proposed converting the CT scans into a 3D printed model of the left atrial appendage and left atrium so he can visually …


Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter Mar 2020

Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter

Theses and Dissertations

A process was developed to identify potential defects in previous layers of Selective Laser Melting (SLM) Powder Bed Fusion (PBF) 3D printed metal parts using a mid-IR thermal camera to track infrared 3.8-4 m band emission over time as the part cooled to ambient temperature. Efforts focused on identifying anomalies in thermal conduction. To simplify the approach and reduce the need for significant computation, no attempts were made to calibrate measured intensity, extract surface temperature, apply machine learning, or compare measured cool-down behavior to computer model predictions. Raw intensity cool-down curves were fit to a simplified functional form designed to …


Prosthetic Hand: Structure, Riley Smith, Riley Smith Jan 2020

Prosthetic Hand: Structure, Riley Smith, Riley Smith

All Undergraduate Projects

The objective of this project was to design the structure of a prosthetic hand that has articulating fingers and thumb in order to grip various objects. A design was developed that can add to the available options of prosthetics on the market.

In order to create a base hand for the project, the hand was modeled off of rough human hand dimensions. Analyses determined the feasible size of components. Once a base size was found the movement system in both grip and return form were developed and refined. With the parts being modeled in Solidworks and 3D printed, iterations of …


Mechanical Lift Assist Hoist, Jacob Vanblaricom Jan 2020

Mechanical Lift Assist Hoist, Jacob Vanblaricom

All Undergraduate Projects

Pneumatic Gripper for Cast Products

By: Jacob VanBlaricom

Mentors: Craig Johnson (craig.johnson@cwu.edu), Kurt Gray (kgray06@northstarcasteel.com ),

Ted Bramble (ted.bramble@cwu.edu) , Travis Lamberte (travis@northstarcasteel.com )

The Team was tasked by NorthStar Casteel to create a device that would allow for easy mobility and manipulation of unfinished cast products. The device is needed to increase manufacturing time and decrease worker strain. In order to do this the team designed a custom gripper to match the castings produced at this facility. The gripper was powered by a pneumatic system due to the speed and reliability in this …


Enabling 3d Printing Technologies For Artificial Compound Eye System And Penetrating Neural Probes, Boshen Zhang Jan 2020

Enabling 3d Printing Technologies For Artificial Compound Eye System And Penetrating Neural Probes, Boshen Zhang

Wayne State University Dissertations

3D printing has become a useful and transformative method and has applications in many different fields, including organ printing, aerospace applications, and medical devices. With higher resolution, faster production speed, and more design flexibility, 3D printing technologies can lead to more novel devices and systems. In this research, two new techniques have been developed to enable 3D printing technologies for artificial compound eye system and penetrating glassy carbon neural electrode array.

This work focuses on developing new applications based on the SLA 3D printing process, which uses the liquid resin to create a solid 3D structure. The limitation of SLA …


Titanium Nitride Nanotube Electrodes Used In Neural Signal Recording Application And Neurotransmitter Detection, Gui Chen Jan 2020

Titanium Nitride Nanotube Electrodes Used In Neural Signal Recording Application And Neurotransmitter Detection, Gui Chen

Wayne State University Dissertations

Electrode probes are devices widely used for stimulating and recording neural cell signals in the neuroscience field, which can convert the ion potential generated by electrochemical activities into an electronic potential that can be measured by the external instrument systems. A stable neural interface that effectively communicates with the nervous system via electrode is much important for the robust recording and the long-term monitoring of the activity of the neural signals. These probes are designed to minimize tissue damage for superior signal quality. Each probe’s mechanical, geometric, and electrical characteristics are precise and highly reproducible for consistent, high-quality results. There …


Reaction Profiling Of Extracellular Protein Phosphorylation Through A Microfluidic Reactor Coupled With Raman Spectroscopy, Abigail Casey Jan 2020

Reaction Profiling Of Extracellular Protein Phosphorylation Through A Microfluidic Reactor Coupled With Raman Spectroscopy, Abigail Casey

Theses and Dissertations

Diseases and disorders in the human body are considered abnormalities of proper cellular function. Understanding the signal transduction mechanisms that cause these abnormalities is crucial to developing earlier detection methods, better treatment options and effective cures. While current diagnostic procedures are powerful tools in diagnosing diseases, they are ineffective in informing physicians on the real-time behavior of the signal transduction mechanisms associated with diseases and disorders. Currently, disease progression is monitored over time through routine patient visits and testing by one or more of the above techniques. By developing an approach that can monitor structural and conformational changes of proteins …


Dynamic Testing: An Experimental Approach To Defect Identification In Additive Manufactured Parts, Aimee Allen Jan 2020

Dynamic Testing: An Experimental Approach To Defect Identification In Additive Manufactured Parts, Aimee Allen

Dissertations, Master's Theses and Master's Reports

Today’s additive manufacturing (AM) industry produces specialized parts at low volume or with complex geometries. Traditional testing methods are effective, but costly and time consuming to perform. The AM industry lacks an optimized testing method for identifying internal defects that occur in parts. The evaluation of multiple parts printed on the same build plate for internal defects using various nondestructive (dynamic) testing techniques is presented. From these experiments, perspective was gained on when and how dynamic testing can be used to find defects. Insight gained from these experiments can help the industry in future testing for internal defects.


3d Printing Reinforced Concrete Structures, Bryce Tyler Tafolla Jan 2020

3d Printing Reinforced Concrete Structures, Bryce Tyler Tafolla

Masters Theses

"This study aims to investigate a 3D printing method to directly incorporate continuous reinforcement into concrete structures. The ability to design and produce complex structures with optimized topographical configuration can be used to reduce potential material waste while maintaining the required structural strength. Furthermore, the ability to actively incorporate reinforcement into printed members substantially reduces potential labor requirements and eliminates the need to set up formwork.

The study began its initial approach with a manual extrusion process containing reinforcement to observe the necessary constraints required to achieve a printing system with this functionality. The second stage of development was designing …


Binder Saturation, Layer Thickness, Drying Time And Their Effects On Dimensional Tolerance And Density Of Cobalt Chrome - Tricalcium Phosphate Biocomposite, John Ruprecht Jan 2020

Binder Saturation, Layer Thickness, Drying Time And Their Effects On Dimensional Tolerance And Density Of Cobalt Chrome - Tricalcium Phosphate Biocomposite, John Ruprecht

All Graduate Theses, Dissertations, and Other Capstone Projects

Traditional metals such as stainless steel, titanium and cobalt chrome are used in biomedical applications (implants, scaffolds, etc.) but suffer from issues such as osseointegration and compatibility with existing bone. One way to improve traditional biomaterials is to incorporate ceramics with these metals so that their mechanical properties can be similar to cortical bones. Tricalcium phosphate is such a ceramic with properties such that it can be used in the human body. This research explores the use of the Binder Jetting based additive manufacturing process to create a novel biocomposite made of cobalt chrome and tricalcium phosphate. Experiments were conducted …


Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes Jan 2020

Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes

Open Access Theses & Dissertations

The silica hollow spheres have demonstrated excellent results in multiple applications such as light-weight composites, and optical applications as a glass coating. This material also exhibits excellent thermal, shock impact, and hydrophilic properties extremely useful for industrial applications. However, a controllable size of the particle is desired to further increase the number of applications of the silica hollow spheres.

This Thesis aims a method to fabricate silica hollow spheres in a single step with a controlled diameter size. A study was developed to demonstrate the particle size change when adjusting the molecular weight of the medium by using different alcohol …