Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


In The Pursuit Of Assistance: A Team's Desire To Not Let A Congenital Amputation Get In A Young Boy's Way, Carl Russell Iii, Gavin Loucks, Kirsten Wozniak Oct 2020

In The Pursuit Of Assistance: A Team's Desire To Not Let A Congenital Amputation Get In A Young Boy's Way, Carl Russell Iii, Gavin Loucks, Kirsten Wozniak

Purdue Journal of Service-Learning and International Engagement

EPICS is a service-learning design program run through Purdue University. It strives to teach students design skills through providing for individuals, communities, and organizations in the surrounding area while mirroring engineering industry standards. BME (Biomedical Engineering) is a team within EPICS that strives to serve community partners through biomedical applications. William Sevick is an elementary school student with a congenital arm amputation. William and his family have been working with the BME team for the past three years designing assistive devices with the purpose of improving his actions in daily life such as eating, playing games, and riding his bike.


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Faculty Instruction Face Shield Project, David Holden, John Schneiderhan Apr 2020

Faculty Instruction Face Shield Project, David Holden, John Schneiderhan

Michigan Tech 3D Designs

Early in the spring of 2020 project contributors David Holden and John Schneiderhan began test printing a variety of open source Personal Protective Equipment (PPE)/Covid related items that could help protect or prevent the spread of the emerging virus. With assistance from Pete Baril of the Western Upper Peninsula Health Department (WUPHD) approval was obtained for the face shields to be used in the health care and nursing homes in the area. With the support and approval from university and library administration efforts were coordinated with Dr. Joshua Pearce and the students from the MOST lab to concentrate on the …


Experimental Study On Plugging Behavior Of Degradable Fibers And Particulates Within Acid-Etched Fracture, Lufeng Zhang, Fujian Zhou, Wei Feng, Maysam Pournik, Zhun Li, Xiuhui Li Feb 2020

Experimental Study On Plugging Behavior Of Degradable Fibers And Particulates Within Acid-Etched Fracture, Lufeng Zhang, Fujian Zhou, Wei Feng, Maysam Pournik, Zhun Li, Xiuhui Li

Mechanical Engineering Faculty Publications and Presentations

As proven from field practices in North America and Northwest China, temporary plugging and diverting acid fracturing is an indispensable technology to enhance stimulation effect and hydrocarbon production of complex carbonate reservoirs. It's well-known that the key to the success of this technology lies in creating a temporary plugging within the previously created fractures. Consequently, many scholars have conducted laboratory experiments to investigate the plugging behavior of fibers and particulates. However, the current devices nearly have certain limitations in simulating temporary plugging experiments. Aiming at this problem, this paper introduced the fracture temporary plugging evaluation system with large fracture size, …


Prosthetic Hand: Structure, Riley Smith, Riley Smith Jan 2020

Prosthetic Hand: Structure, Riley Smith, Riley Smith

All Undergraduate Projects

The objective of this project was to design the structure of a prosthetic hand that has articulating fingers and thumb in order to grip various objects. A design was developed that can add to the available options of prosthetics on the market.

In order to create a base hand for the project, the hand was modeled off of rough human hand dimensions. Analyses determined the feasible size of components. Once a base size was found the movement system in both grip and return form were developed and refined. With the parts being modeled in Solidworks and 3D printed, iterations of …


Mechanical Lift Assist Hoist, Jacob Vanblaricom Jan 2020

Mechanical Lift Assist Hoist, Jacob Vanblaricom

All Undergraduate Projects

Pneumatic Gripper for Cast Products

By: Jacob VanBlaricom

Mentors: Craig Johnson (craig.johnson@cwu.edu), Kurt Gray (kgray06@northstarcasteel.com ),

Ted Bramble (ted.bramble@cwu.edu) , Travis Lamberte (travis@northstarcasteel.com )

The Team was tasked by NorthStar Casteel to create a device that would allow for easy mobility and manipulation of unfinished cast products. The device is needed to increase manufacturing time and decrease worker strain. In order to do this the team designed a custom gripper to match the castings produced at this facility. The gripper was powered by a pneumatic system due to the speed and reliability in this …


Dynamic Testing: An Experimental Approach To Defect Identification In Additive Manufactured Parts, Aimee Allen Jan 2020

Dynamic Testing: An Experimental Approach To Defect Identification In Additive Manufactured Parts, Aimee Allen

Dissertations, Master's Theses and Master's Reports

Today’s additive manufacturing (AM) industry produces specialized parts at low volume or with complex geometries. Traditional testing methods are effective, but costly and time consuming to perform. The AM industry lacks an optimized testing method for identifying internal defects that occur in parts. The evaluation of multiple parts printed on the same build plate for internal defects using various nondestructive (dynamic) testing techniques is presented. From these experiments, perspective was gained on when and how dynamic testing can be used to find defects. Insight gained from these experiments can help the industry in future testing for internal defects.


Binder Saturation, Layer Thickness, Drying Time And Their Effects On Dimensional Tolerance And Density Of Cobalt Chrome - Tricalcium Phosphate Biocomposite, John Ruprecht Jan 2020

Binder Saturation, Layer Thickness, Drying Time And Their Effects On Dimensional Tolerance And Density Of Cobalt Chrome - Tricalcium Phosphate Biocomposite, John Ruprecht

All Graduate Theses, Dissertations, and Other Capstone Projects

Traditional metals such as stainless steel, titanium and cobalt chrome are used in biomedical applications (implants, scaffolds, etc.) but suffer from issues such as osseointegration and compatibility with existing bone. One way to improve traditional biomaterials is to incorporate ceramics with these metals so that their mechanical properties can be similar to cortical bones. Tricalcium phosphate is such a ceramic with properties such that it can be used in the human body. This research explores the use of the Binder Jetting based additive manufacturing process to create a novel biocomposite made of cobalt chrome and tricalcium phosphate. Experiments were conducted …