Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

CFD

Aerodynamics and Fluid Mechanics

Master's Theses

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde Jun 2019

A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde

Master's Theses

Powering spacecraft with electric propulsion is becoming more common, especially in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is important to have robust analysis and modeling tools of electric propulsion engines, particularly of the plasma plume. The Navier-Stokes equations used in classic continuum computational fluid dynamics do not apply to the rarefied plasma, and therefore another method must be used to model the flow. A good solution is to use the DSMC method, which uses a combination of particle modeling and statistical methods for modeling the simulated molecules. A DSMC simulation known as SINATRA has been …


Sweep And Taper Analysis Of Surfboard Fins Using Computational Fluid Dynamics, Brandon James Baldovin Mar 2019

Sweep And Taper Analysis Of Surfboard Fins Using Computational Fluid Dynamics, Brandon James Baldovin

Master's Theses

The research presented here provides a basis for understanding the hydrodynamics of surfboard fin geometries. While there have been select studies on fins there has been little correlation to the shape of the fin and its corresponding hydrodynamic performance. This research analyzes how changing the planform shape of a surfboard fin effects its performance and flow field. This was done by isolating the taper and sweep distribution of a baseline geometry and varying each parameter individually whilst maintaining a constant span and surface area. The baseline surfboard fin was used as a template in Matlab to generate a set of …


A Higher-Order Method Implemented In An Unstructured Panel Code To Model Linearized Supersonic Flows, Jake Daniel Davis Feb 2019

A Higher-Order Method Implemented In An Unstructured Panel Code To Model Linearized Supersonic Flows, Jake Daniel Davis

Master's Theses

Since their conception in the 1960s, panel codes have remained a critical tool in the design and development of air vehicles. With continued advancement in computational technologies, today's codes are able to solve flow fields around arbitrary bodies more quickly and with higher fidelity than those that preceded them. Panel codes prove most useful during the conceptual design phase of an air vehicle, allowing engineers to iterate designs, and generate full solutions of the flow field around a vehicle in a matter of seconds to minutes instead of hours to days using traditional CFD methods. There have been relatively few …