Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Electrocoagulation As A Pretreatment For Electroxidation Of E. Coli, William Lynn, Joe Heffron, Brooke Mayer Dec 2019

Electrocoagulation As A Pretreatment For Electroxidation Of E. Coli, William Lynn, Joe Heffron, Brooke Mayer

Civil and Environmental Engineering Faculty Research and Publications

Insufficient funding and operator training, logistics of chemical transport, and variable source water quality can pose challenges for small drinking water treatment systems. Portable, robust electrochemical processes may offer a strategy to address these challenges. In this study, electrocoagulation (EC) and electrooxidation (EO) were investigated using two model surface waters and two model groundwaters to determine the efficacy of sequential EC-EO for mitigating Escherichia coli. EO alone (1.67 mA/cm2, 1 min) provided 0.03 to 3.9 logs mitigation in the four model waters. EC alone (10 mA/cm2, 5 min) achieved ≥1 log E. coli mitigation in all …


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Data

Corresponding data set for Tran-SET Project No. 18CLSU02. Abstract of the final report is stated below for reference:

"Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured …


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Publications

Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured in wet-dry cycles to determine their feasibility in Region 6. The results showed that the specimen groups with …