Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Manipulating Fiber Orientation For The Reduction Of Warpage In Carbon Fiber Composite Sandwich Panels, Landon Burnley, Gabrielle Correia Jul 2019

Manipulating Fiber Orientation For The Reduction Of Warpage In Carbon Fiber Composite Sandwich Panels, Landon Burnley, Gabrielle Correia

Materials Engineering

Safran Cabin (Santa Maria, CA), previously known as Zodiac Aerospace, designs and manufactures interior cabin components for private and commercial aircraft. Carbon fiber face sheets have recently been incorporated in their overhead luggage bin assemblies which utilize a composite sandwich panel design, in order to provide additional stiffness to the previous glass fiber sandwich panels. Since the introduction of carbon fiber in these luggage bin panels, Safran has experienced an increase in warpage during manufacturing. When inspected by quality control, the panels are tested mimicking how they are installed in aircraft. If the panels do not meet specifications, the warped ...


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of ...


Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor Jun 2019

Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor

Materials Engineering

In petroleum processing, the flow of catalyst readily leads to erosion of piping in a fluid catalytic cracking unit. Advances in coating materials and processes necessitate a re-evaluation of current protection methods. Commercially available tungsten-carbide (WC) claddings and nanostructured WC-W CVD coatings were investigated as potential alternative erosion-resistant coatings. Erosion tests by solid particle impingement were conducted on 2 variations of claddings and 1 variation of WC-W coatings following ASTM standard G76. A36 steel coupons were used as reference samples. For statistical validation, 2-3 replications of the tests were performed for the claddings and WC-W coating. Testing was conducted using ...


The Impact Of Preheat On 2205 Duplex Stainless Steel Welds, Angelee G. Q. Breuninger, Iris I. Li, Cristian V. Sion Jun 2019

The Impact Of Preheat On 2205 Duplex Stainless Steel Welds, Angelee G. Q. Breuninger, Iris I. Li, Cristian V. Sion

Materials Engineering

The goal of this project is to determine the relationship between preheat temperature and phase balance of austenite and ferrite in the heat affected zone (HAZ) of a dissimilar thickness weld made of Sandvik SAF 2205 duplex stainless steel (DSS). Various preheat temperatures were applied (no preheat, 63°C, 98 °C, 141 °C, 181 °C, and 214 °C) to a 2-inch thick plate that was welded to a 0.072-inch thin sheet, with a 0.125-inch standoff, using manual gas tungsten arc welding (GTAW). Welding variables (voltage, amperage, and travel speed) were recorded and thermocouples were placed along the backside ...


Photooxidation Of Biopolymers, Marlon H. Dieguez Jun 2019

Photooxidation Of Biopolymers, Marlon H. Dieguez

Materials Engineering

The lack of degradation of plastic products have imposed problems in the preservation of natural environments and their ecosystems through plastic accumulation. This collection of plastics promotes toxin exposure to wildlife, finding its way into the food chain, affecting both land and marine ecosystems. The project goal is to understand the degradation mechanisms of biodegradable materials and other comparable materials through UV radiation testing. Polylactide (PLA) films and polycarbonate (PC) films will be compared for their relative deterioration from constant UV radiation in a Q-U-V accelerated weather tester for 28 days. Five 3” by 5” samples of 14 mil thick ...


Effect Of Overaging On Tensile Properties Of 2219-T852 Aluminum, Austin Bitter, Tristan Koyamatsu Jun 2019

Effect Of Overaging On Tensile Properties Of 2219-T852 Aluminum, Austin Bitter, Tristan Koyamatsu

Materials Engineering

This project investigated the overaging performance of aluminum alloy 2219-T852 for use in high temperature applications. 2219 aluminum is an alloy containing 5.8 to 6.8 percent copper, and is classified as a high strength age hardenable alloy. The sponsor for this project, Weber Metals, hopes to use 2219 Al to replace titanium in certain applications above the thermal limits of typical high strength Al. To test its performance, they manufactured round tensile samples and delivered them in peak aged, T852 condition. These samples were then overaged at a range of times and temperatures. The times in this experiment ...


Investigation Of The Encapsulation Efficiency Of Hexanal In Y-Cyclodextrin Metal Organic Frameworks, Travis J. Lang Jun 2019

Investigation Of The Encapsulation Efficiency Of Hexanal In Y-Cyclodextrin Metal Organic Frameworks, Travis J. Lang

Materials Engineering

Nanoporous materials have been extensively studied for applications such as drug delivery and organic compound storage. The nanoporous material of this study is a metal organic framework (MOF) which is a coordination of metal ions with organic binders. The structure created by this coordination can be used to absorb organic compounds, such as plant growth regulators, and subsequently release the organic compounds over a prolonged period to extend the storage life of foods. This study is examining the encapsulation efficiency of hexanal in γ-cyclodextrin metal organic frameworks (γ-CDMOFs) as a mechanism for potential active packaging applications. γ-CDMOFs were synthesized by ...


Microstructural Transformation Of Cold-Sprayed Grcop-42 For Rocket Engine Combustion Chamber Liners, Mason Souther Jun 2019

Microstructural Transformation Of Cold-Sprayed Grcop-42 For Rocket Engine Combustion Chamber Liners, Mason Souther

Materials Engineering

Rocket engines have always relied on high-conductivity copper liners to protect structural components from extreme thermal loads produced by combustion. Forged NARloy-Z has been the material of choice for decades but increasing cost of its constituent silver and high waste in the machining process has reduced the alloy’s cost effectiveness. Aerojet Rocketdyne wants to determine the viability of cold-spray additively manufactured GRCop-42 as a replacement alloy to reduce liner cost. Screening tests were performed to observe the microstructural development and microhardness changes of cold-sprayed GRCop-42 after being subjected to multiple stages of the typical heat treatment of a combustion ...


A Study And Simulation Of Flux Induced Corrosion In Copper Tubing Used For The Distribution Of Potable Water, Daniel O. Benham Jun 2019

A Study And Simulation Of Flux Induced Corrosion In Copper Tubing Used For The Distribution Of Potable Water, Daniel O. Benham

Materials Engineering

Water side corrosion within copper plumbing can occur due to a wide variety of unwanted circumstances. Through the controlled immersion of six ¾” copper tubing samples with five utilizing a unique industry standard soldering flux, this investigation associates residual flux deposits with the initiation of pitting in copper. Water stagnation in a copper potable water distribution system, typically associated with an infrequently used faucet, is a condition highly prone to copper pitting. A test apparatus designed to produce a partially stagnant flow condition with scheduled electrolyte flushes every 3 days was developed and constructed to contain 6 test samples for ...


Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery Jun 2019

Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery

Materials Engineering

Amyloid nanofibrils are natural materials capable of self-assembling into precise structures with tunable functionalities, while exhibiting excellent mechanical properties. In combination with highly conductive graphene oxide (GO), the 1-D amyloid nanofibrils and 2-D nanosheets of GO can produce a robust and bio-functional nanohybrid, hypothesized to exhibit multi-domain functional properties useful for enzyme sensing, water purification, drug delivery, and tissue scaffolding applications. Here, we examine the properties of an amyloid-graphene oxide nanohybrid film made with amyloids derived from hen egg white lysozymes in an attempt to explore the diverse toolbox of amyloid derivatives and establish ideal fabrication methods and formulations of ...


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the ...


Rotating Beam Fatigue Of Forged 2219-T852 Aluminum Alloy, Julio Escamilla, Madison Reed Jun 2019

Rotating Beam Fatigue Of Forged 2219-T852 Aluminum Alloy, Julio Escamilla, Madison Reed

Materials Engineering

2219 aluminum has been used extensively in aerospace applications due to its ability to retain strength in large section thicknesses, thus making it ideal for large forgings. However, the Metallic Materials Properties Development and Standardization (MMPDS) handbook, a source of design data for aerospace industry applications, lacks information on 2219 in the T852 condition, particularly concerning the behavior of the alloy under cyclic loading conditions. Data was collected for forgings of 2219-T852 aluminum as produced by Weber Metals to determine the fatigue life of the alloy-temper combination and to assess the effects of forge thickness and orientation on fatigue life ...


Moisture Characterization Of Thermoplastics And Thermosets For Use As Matrices In Fiber Reinforced Composites, Kieran Hook, Ray Hsu Jun 2019

Moisture Characterization Of Thermoplastics And Thermosets For Use As Matrices In Fiber Reinforced Composites, Kieran Hook, Ray Hsu

Materials Engineering

Epoxy matrix composites are widely used in aerospace industry for lighter aircraft while thermoplastic-matrix composites have traditionally been underutilized despite their excellent fracture resistance, impact strength, and the ability to be recycled. Toray Advanced Composites (Morgan Hill, CA) wants to investigate the structural integrity of thermoplastic matrices in common aircraft operating environments. An experiment was conducted to observe the effect of moisture absorption on thermoplastic composites’ mechanical strength. PEEK, PPS, and PEI matrices were compared to an epoxy matrix in this experiment. Samples were submerged in 160ºF distilled water to accelerate moisture absorption. For two months, the changes in mass ...


Maximizing Poly(3-Butylthiophene-2,5-Diyl) Electrical Conductivity By Maximizing Transcrystal Growth, Edward Alexander Bicknell Jun 2019

Maximizing Poly(3-Butylthiophene-2,5-Diyl) Electrical Conductivity By Maximizing Transcrystal Growth, Edward Alexander Bicknell

Materials Engineering

Polymers are generally considered electrical insulators. Despite this, research in the mid 1970’s found that polymers consisting of a conjugated backbone structure could become electrically conductive upon doping.1 The conjugated polymer analyzed for this project was poly(3-butylthiophene-2,5-diyl) (P3BT). Transcrystals have been found as a way to promote electrical conductivity through mechanisms including π bond atomic orbital overlap and electron mobility.2 In theory, maximizing transcrystal length would also maximize P3BT electrical conductivity, increasing its applicable use in electronic devices. The goal of this project was to determine a methodological way to maximize P3BT electrical conductivity by ...