Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Optics

Institution
Keyword
Publication

Articles 1 - 30 of 49

Full-Text Articles in Engineering

Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He Dec 2019

Development Of High-Speed Photoacoustic Imaging Technology And Its Applications In Biomedical Research, Yun He

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) is a novel imaging modality that combines the fine lateral resolution from optical imaging and the deep penetration from ultrasonic imaging, and provides rich optical-absorption–based images. PAT has been widely used in extracting structural and functional information from both ex vivo tissue samples to in vivo animals and humans with different length scales by imaging various endogenous and exogenous contrasts at the ultraviolet to infrared spectrum. For example, hemoglobin in red blood cells is of particular interest in PAT since it is one of the dominant absorbers in tissue at the visible wavelength.The main focus of …


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh Nov 2019

Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh

Optical Science and Engineering ETDs

In this dissertation we demonstrate a new structure based on waveguide coupling atop a silicon wafer using a chirped grating to provide the dispersion that leads to a high-resolution, compact, fully integrable and CMOS-compatible spectrometer. Light is both analyzed and detected in a single, completely monolithic component which enables realizing a high-resolution portable spectrometer with an extremely compact footprint. The structure is comprised of a SiO2/Si3N4/SiO2 waveguide on top of a silicon wafer. Grating regions are fabricated on the top cladding of the waveguide. The input light is incident on a chirped grating …


Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang Nov 2019

Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang

Optical Science and Engineering ETDs

The properties of localized surface plasmons (LSP) have been broadly utilized for chemical sensing, surface enhanced Raman spectroscopy, biomedical imaging and photothermal treatments. By exploiting well-established plasmonic effects, the spectroscopic investigation of intriguing quantum phenomena, such as excitonic interband and intersubband (ISB) transitions in semiconductor heterostructures, was examined and extended in both far- and near-field optical measurements. For far-field characterization, we used colloidal plasmonic Au nanorods (AuNRs) to increase the quantum efficiency of InGaAs/GaAs single quantum well. By analyzing the temperature-dependent photoluminescence enhancement as a function of GaAs capping layer thickness, we attributed the mechanism of the LSP enhancement to …


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming Oct 2019

Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming

Theses and Dissertations

A sample metalens generated from Titanium Nitride deposited onto Aluminum Oxide was designed to focus at 10 microns with a beam centered at 800nm, and when analyzed with high intensity illumination was found to have a focal length of 9.650 ±.003µm at an intensity of 16.93[MW/cm2 ]. Analyzing this change by comparing it to a Fresnel Lens’ physics shows that for this lens, the effective nonlinear index of refraction is certainly greater than the nonlinear index of just Titanium Nitride itself, at −1.6239 × 10−15[m2/W] compared to the materials −1.3 × 10−15[m2 …


Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton Sep 2019

Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton

Theses and Dissertations

Digital holography (DH) uses coherent detection and offers direct access to the complex-optical field to sense and correct image aberrations in low signal-to-noise environments, which is critical for tactical applications. The performance of DH is compared to a similar, well studied deep-turbulence wavefront sensor, the self-referencing interferometer (SRI), with known efficiency losses. Wave optics simulations with deep-turbulence conditions and noise were conducted and the results show that DH outperforms the SRI by 10's of dB due to DH's strong reference. Additionally, efficiency experiments were conducted to investigate DH system losses. The experimental results show that the mixing efficiency (37%) is …


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich Aug 2019

Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich

McKelvey School of Engineering Theses & Dissertations

Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. In this research work, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. We investigate polarization division multiplexing based optical communication systems in five distinct parts. In the first part of the work, we define a simulation model of two or more linearly polarized optical signals (at different polarization angles) that are transmitted through a common medium (e.g., air), filtered …


Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia Aug 2019

Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia

Graduate Theses and Dissertations

The drive for smaller and more compact devices presents several challenges in materials and fabrication strategies. Although photolithography is a well-developed method for creating microdevices, the disparate requirements in fabrication strategies, material choices, equipment and process complexities have limited its applications. Microextrusion printing (μEP) provides a promising alternative for microfabrication. Compared to the traditional techniques, the attractions lie in the wide range of printable material choice, greater design freedom, fewer processing steps, lower cost for customized production, and the plurality of compatible substrates. However, while extrusion-based 3D printing processes have been successfully applied at the macroscale, this seeming simplicity belies …


Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor Aug 2019

Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor

Graduate Theses and Dissertations

Over the last decade, the evolution of the global consciousness in response to decreasing environmental conditions from global warming and pollution has led to an outcry for finding new alternative/clean methods for harvesting energy and determining ways to minimize energy consumption. III-nitride materials are of interest for optoelectronic and electronic device applications such as high efficiency solar cells, solid state lighting (LEDs), and blue laser (Blu-ray Technology) applications. The wide range of direct band gaps covered by its alloys (0.7eV-6.2eV) best illustrates the versatility of III-nitride materials. This wide range has enabled applications extending from the ultraviolet to the near …


Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto Aug 2019

Polarization Properties Of Airy And Ince-Gaussian Laser Beams, Sean Michael Nomoto

Graduate Theses and Dissertations

The description of polarization states of laser light as linear, circular polarization within the paraxial scalar wave approximation is adequate for most applications. However, this description falls short when considering laser light as an electromagnetic wave satisfying Maxwell's equations. An electric field with a constant unit vector for direction of the field and a space dependent complex scalar amplitude in the paraxial wave approximation does not satisfy Maxwell equations which, in general, requires all three Cartesian components of electric and magnetic fields associated for a nonzero laser beam to be nonzero.

Physical observation of passing a linearly polarized laser through …


Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges Aug 2019

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges

Civil Engineering Undergraduate Honors Theses

A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument …


An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal May 2019

An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal

MSU Graduate Theses

Rigorous study of the speciation distribution of uranyl-chloride bearing solutions under hydrothermal conditions is important to understand the transport mechanism of uranium underground, which is of uttermost interest to parties studying the geological uranium deposits and those studying the possibilities of geological repositories for spent nuclear waste. I report an in-situ Raman spectroscopic study of the speciation distribution of aqueous uranyl-chloride complexes upto 500°C conducted using a HDAC as the high PT spectroscopic cell. The samples studied contained the species UO22+, UO2Cl+, UO2Cl20 and UO2Cl3- …


Symmetry And Dopant Diffusion In Inverted Nanopyramid Arrays For Thin Crystalline Silicon Solar Cells, Seok Jun Han May 2019

Symmetry And Dopant Diffusion In Inverted Nanopyramid Arrays For Thin Crystalline Silicon Solar Cells, Seok Jun Han

Chemical and Biological Engineering ETDs

In this dissertation, we enhance the efficiency of thin flexible monocrystalline silicon solar cells by breaking symmetry in light trapping nanostructures and improving homogeneity in dopant concentration profile. These thin cells are potentially less expensive than conventional thick silicon cells by using less silicon material and making the cells more convenient to be handled when supported on polymer films. Moreover, these cells are widely applicable due to their flexibility and lightweight. However, for high efficiencies, these cells require effective light trapping and charge collection. We achieve these in cells based on 14-mm-thick free-standing silicon films with light-trapping arrays of nanopyramidal …


Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio May 2019

Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio

LSU Doctoral Dissertations

X-ray grating interferometry is a nondestructive tool for visualizing the internal structures of samples. Image contrast can be generated from the absorption of X-rays, the change in phase of the beam and small-angle X-ray scattering (dark-field). The attenuation and differential phase data obtained complement each other to give the internal composition of a material and large-scale structural information. The dark-field signal reveals sub-pixel structural detail usually invisible to the attenuation and phase probe, with the potential to highlight size distribution detail in a fashion faster than conventional small-angle scattering techniques. This work applies X-ray grating interferometry to the study of …


Modeling And Characterization Of A Ring-Resonator Based Silicon Photonic Sensor On Silicon-On-Insulator (Soi), Gwangho Choi May 2019

Modeling And Characterization Of A Ring-Resonator Based Silicon Photonic Sensor On Silicon-On-Insulator (Soi), Gwangho Choi

Graduate Theses - Physics and Optical Engineering

The purpose of this work is to build silicon photonic devices and verify their functionalities. In particular, the structure of a ring resonator (RR) is analyzed and applied to various silicon photonic application in sensing. Silicon waveguides, grating couplers, directional couplers, and RRs are fabricated on the silicon-on-insulator (SOI) wafer. Geometrical parameters and optical properties of the silicon devices are studied and also applied to the design of the aforementioned devices. The waveguide dimensions and, optical properties of the silicon waveguide such as dispersion and effective-index are examined. The RRs are made of a series of straight and bent waveguides …


Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts May 2019

Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts

Graduate Theses - Physics and Optical Engineering

Hyperbolic metamaterials (HMMs) show extreme anisotropy, acting as metals and dielectrics along orthogonal directions. They are designed using the effective medium theory (EMT) and can be fabricated using standard semiconductor processing techniques. Current techniques used to characterize the optical behavior of HMMs have a high complexity or are unable to robustly determine the complex permittivity tensor. We describe the details of a procedure to obtain a very low mean-squared-error (MSE) for extraction of permittivity from hyperbolic metamaterials using spectroscopic ellipsometry. We have verified our procedure by fabricating three different samples of various materials and fill factors designed to have a …


Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés May 2019

Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés

Optical Science and Engineering ETDs

This work modeled the early to middle successes achieved in the field of ultrafast, high peak power optics, beginning with the work of Nobel Prize winners Donna Strickland and Gérard Mourou in 1985. In our work, 100 fs light pulses of around 800 nm were generated by a Ti:Sapphire oscillator, then amplified to approximately 30 GW peak power using a chirped pulse amplification system that included regenerative and multi-pass amplifiers. As a verification of our pulses having high peak powers and ultrashort durations, they were then used to strike water, glass, and a Kerr Cell. Supercontinuum generation was observed as …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista May 2019

Optical Response Analysis Of Thz Photoconductive Antenna Using Comsol Multiphysics, Jose Isaac Santos Batista

Electrical Engineering Undergraduate Honors Theses

A THz photoconductive antenna consists of antenna pads laid over a photoconductive substrate. These types of antennas are excited through the application of an optical pump (laser), which generates carriers inside the semiconductor. The acceleration and recombination of these carriers produce photocurrent that excites the antenna and generates THz pulse. This thesis focuses on analyzing the optical response of a photoconductive antenna, which consist of the interaction of the incident electric field of a laser pump with the radiating device. It develops the amplitude modulation process of a plane wave of light into a laser pump. It also takes into …


Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh May 2019

Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh

Graduate Theses and Dissertations

This dissertation is aimed to numerically study the effect of plasmonic grating electrodes on the efficiency of metal-semiconductor-metal photodetectors (MSM PDs) and the sensitivity of Surface Enhanced Raman Spectroscopy (SERS). This research can benefit many areas of nanoscience and optics, including plasmonic applications, such as, super lenses, nano-scale optical circuits, optical filters, surface plasmon enhanced photo-detectors solar cells, imaging sensors, charge-coupled devices (CCD), and optical-fiber communication systems. Several parameters, wire widths and thickness, gap space, taper angle, and the incident wavelength and angle, were investigated. The goal of this research is to utilize the plasmonic phenomenon by using plasmonic gratings …


Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz Mar 2019

Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz

Theses and Dissertations

This research impacts the development of a cost-saving, on-chip device that can replace a wide range of costly, bulky sensors for commercial and defense applications. In particular, the goals of this work were to design and test a sensor that uses the optical properties of liquid crystal (LC) to detect acoustic waves. This began with developing a method to fine-tune the optical features of the liquid crystal. Statistical analysis of select experimental variables, or factors, lead to ideal settings of those variables when creating the sensor. A two-factor and three-factor experiment were separately conducted and analyzed as a preliminary demonstration …


Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara Mar 2019

Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara

Theses and Dissertations

With increasing engine temperatures, it is becoming more important to design effective film cooling schemes. Low temperature, large scale tests are often implemented in the design process to reduce cost and complexity. A nondimensional adiabatic effectiveness can be used as an indication of the performance of a film cooling scheme. However, the coolant flow rate must be properly scaled between the low temperature tests and engine temperatures to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Tests are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure …


Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen Mar 2019

Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen

Doctoral Dissertations

Layered transition metal dichalcogenides (TMDCs) have attracted great interests in recent years due to their physical properties manifested in different polytypes: Hexagonal(H)-TMDC,which is semiconducting, exhibits strong Coulomb interaction and intriguing valleytronic properties; distorted octahedral(T’)-TMDC,which is semi-metallic, is predicted to exhibit rich nontrivial topological physics. In this dissertation,we employ the polarization-resolved micron-Raman/PL spectroscopy to investigate the optical properties of the atomic layer of several polytypes of TMDC. In the first part for polarization-resolved Raman spectroscopy, we study the lattice vibration of both H and T’-TMDC, providing a thorough understanding of the polymorphism of TMDCs. We demonstrate that Raman spectroscopy is a …


Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann Mar 2019

Infrared And Electro-Optical Stereo Vision For Automated Aerial Refueling, William E. Dallmann

Theses and Dissertations

Currently, Unmanned Aerial Vehicles are unsafe to refuel in-flight due to the communication latency between the UAVs ground operator and the UAV. Providing UAVs with an in-flight refueling capability would improve their functionality by extending their flight duration and increasing their flight payload. Our solution to this problem is Automated Aerial Refueling (AAR) using stereo vision from stereo electro-optical and infrared cameras on a refueling tanker. To simulate a refueling scenario, we use ground vehicles to simulate a pseudo tanker and pseudo receiver UAV. Imagery of the receiver is collected by the cameras on the tanker and processed by a …


Hybrid Optical Integrator Based On Silicon-On-Insulator Platform, Taewon Huh Jan 2019

Hybrid Optical Integrator Based On Silicon-On-Insulator Platform, Taewon Huh

Graduate Theses - Physics and Optical Engineering

A hybrid optical integrator is a recirculating loop that performs oversampling typically for analog input, using the cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA). The modulated input signal changes the gain of the loop through XGM and thus modifies the loop accumulation. This thesis presents hybrid optical integrator for an all-optical analog-to-digital converter based on a silicon photonics platform. The device consists of silicon waveguides of dimension 220 × 500 nm (thick × width) and approximately 5 m optical loop length including fiber length, input and output grating couplers for 1550 nm signal, directional couplers, and external components …


High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder Jan 2019

High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder

Electronic Theses and Dissertations

See-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time enable low duty ratio operation, which plays a key role for suppressing image blurs. A dimmer placed in front of AR display helps to control the incident background light, which in turn improves the image contrast. In this dissertation, …