Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Theses/Dissertations

Mechanical Engineering

Theses and Dissertations

Materials

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Using A Nondispersive Wave Propagation For Measuring Dynamic Fracture Initiation Toughness Of Materials: Experimental And Numerical Based Study, Ali Fahad Fahem Oct 2019

Using A Nondispersive Wave Propagation For Measuring Dynamic Fracture Initiation Toughness Of Materials: Experimental And Numerical Based Study, Ali Fahad Fahem

Theses and Dissertations

Fracture mechanics has been a subject of great interest in the engineering community for decades. During this period, fracture parameters such as Stress Intensity Factor (SIF), J-integral, and Crack-Tip Opening Displacement (CTOD) have been developed and used to characterize the fracture properties of most engineering materials under quasi-static loading condition. Usually, these properties are obtained experimentally by using standard methods such as ASTM E399, E1820 or E1920 to evaluate the stress intensity factor ������ ������������, elastic-plastic toughness ������ ������������ and crack tip opening displacement (CTOD) respectively. Conversely, most critical engineering applications are subjected to a sudden or high strain rate …


Development Of Flexible Photo-Mechanoluminescent Polymeric Based Systems, Carlos Hernandez May 2019

Development Of Flexible Photo-Mechanoluminescent Polymeric Based Systems, Carlos Hernandez

Theses and Dissertations

The project focuses on the creation of nanofiber systems with enhanced photo-mechanoluminescent response and high mechanical flexibility to further enhance promising optical applications. Lanthanide-Polyvinyl Di-Fluoride fiber systems were created using centrifugal spinning and characterized using SEM, FTIR, XPS, DSC, XRD, and PL. Fibers luminescence response was gotten when induced by ultraviolet light and the application of an impact force.