Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal Oct 2019

Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal

Computer Science: Faculty Publications and Other Works

This paper presents progress in developing exercises for high school students incorporating level-appropriate mathematics into robotics activities. We assume mathematical foundations ranging from algebra to precalculus, whereas most prior work on integrating mathematics into robotics uses only very elementary mathematical reasoning or, at the other extreme, is comprised of technical papers or books using calculus and other advanced mathematics. The exercises suggested are relevant to any differerential-drive robot, which is an appropriate model for many different varieties of educational robots. They guide students towards comparing a variety of natural navigational strategies making use of typical movement primitives. The exercises align …


Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg Jul 2019

Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg

Computer Science: Faculty Publications and Other Works

This paper points students towards ideas they can use towards developing a convenient library for robot navigation, with examples based on Botball primitives, and points educators towards mathematics and programming exercises they can suggest to students, especially advanced high school students.


Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg Apr 2019

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg

Computer Science: Faculty Publications and Other Works

This paper shows how students can be guided to integrate elementary mathematical analyses with motion planning for typical educational robots. Rather than using calculus as in comprehensive works on motion planning, we show students can achieve interesting results using just simple linear regression tools and trigonometric analyses. Experiments with one robotics platform show that use of these tools can lead to passable navigation through dead reckoning even if students have limited experience with use of sensors, programming, and mathematics.


Smart Control Of Buck Converters Using A Switching-Based Clustering Algorithm, Brook Abegaz, M. Cmiel Jan 2019

Smart Control Of Buck Converters Using A Switching-Based Clustering Algorithm, Brook Abegaz, M. Cmiel

Engineering Science Faculty Publications

This paper proposes a new approach to the control of switching voltage regulators (buck converters). The method is performed using a switching-based clustering algorithm. The implementations of competing approaches such as a fuzzy-logic controller, proportional integral derivative controller and a neural network based controller are presented in order to compare and evaluate the performance of the switching-based clustering algorithm. The results of the approach show that the proposed method could improve the stability and the performance of the buck converter system by 2.7% in terms of settling time and by 0.6% in terms of the overshoot value as compared to …


Smart Control Of Automatic Voltage Regulators Using K-Means Clustering, Brook Abegaz, J. Kueber Jan 2019

Smart Control Of Automatic Voltage Regulators Using K-Means Clustering, Brook Abegaz, J. Kueber

Engineering Science Faculty Publications

The future cyber physical systems consist of voltage regulators distributed across wide geographical areas. In this paper, a smart control approach of voltage regulators is presented for cyber physical system applications. The approach is implemented using K-means clustering algorithms that use data from voltage and current sensors, compute the correlation of changes across the regulators and generate a proportional feedback. Advanced estimation methods are used in cases where the data from the sensors was not available. The results show that the approach could be used to improve the performance of networked, power dependent systems by 94.5% in terms of overshoot …