Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Graphene

Chemical and Biochemical Engineering Faculty Research & Creative Works

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Facile Synthesis Of Reduced Graphene Oxide-Supported Pd/Cuo Nanoparticles As An Efficient Catalyst For Cross-Coupling Reactions, Hany A. Elazab, M. A. Sadek, Tamer T. El-Idreesy Jan 2019

Facile Synthesis Of Reduced Graphene Oxide-Supported Pd/Cuo Nanoparticles As An Efficient Catalyst For Cross-Coupling Reactions, Hany A. Elazab, M. A. Sadek, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

The present communication reports a scientific investigation of a simple and versatile synthetic route for the synthesis of palladium nanoparticles decorated with copper oxide and supported on reduced graphene oxide (rGO). They are used as a highly active catalyst of Suzuki, Heck, and Sonogashira cross coupling reactions with a remarkable turnover number of 7000 and a turnover frequency of 85000 h-1. The Pd-CuO nanoparticles supported on reduced graphene oxide nanosheets (Pd-CuO/rGO) exhibit an outstanding performance through a high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method is used to prepare this efficient catalyst using microwave irradiation …


Hydrothermal Synthesis Of Graphene Supported Pd/Fe 3 O 4 Nanoparticles As Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab, Mamdouh A. Gadalla, Mohamed A. Sadek, Tamer T. El-Idreesy Jan 2019

Hydrothermal Synthesis Of Graphene Supported Pd/Fe 3 O 4 Nanoparticles As Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab, Mamdouh A. Gadalla, Mohamed A. Sadek, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

This research reports a reproducible, reliable, and efficient method for preparing palladium nanoparticles dispersed on a composite of Fe3O4 and graphene as an active catalyst with high efficiency for being used in Suzuki cross – coupling reactions. Graphene supported Pd/Fe3O4 nanoparticles (Pd/Fe3O4 /G) exhibit a remarkable catalytic performance towards Suzuki coupling reactions. Moreover, the prepared catalyst recyclability was up to nine times without losing its high catalytic activity. The catalyst was prepared using hydrothermal synthesis; the prepared catalyst is magnetic in order to facilitate catalyst separation out of the reaction medium …


Polyvinylpyrrolidone - Reduced Graphene Oxide - Pd Nanoparticles As An Efficient Nanocomposite For Catalysis Applications In Cross-Coupling Reactions, Hany A. Elazab, Tamer T. El-Idreesy Jan 2019

Polyvinylpyrrolidone - Reduced Graphene Oxide - Pd Nanoparticles As An Efficient Nanocomposite For Catalysis Applications In Cross-Coupling Reactions, Hany A. Elazab, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

This paper reported a scientific approach adopting microwave-assisted synthesis as a synthetic route for preparing highly active palladium nanoparticles stabilized by polyvinylpyrrolidone (Pd/PVP) and supported on reduced Graphene oxide (rGO) as a highly active catalyst used for Suzuki, Heck, and Sonogashira cross coupling reactions with remarkable turnover number (6500) and turnover frequency of 78000 h-1. Pd/PVP nanoparticles supported on reduced Graphene oxide nanosheets (Pd-PVP/rGO) showed an outstanding performance through high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method was used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires simultaneous reduction …