Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Study Of Charge Carrier Transport In Graphene And Graphite As Two Dimensional And Quasi-Two Dimensional Materials And Their Interfaces, Nalat Sornkhampan Mar 2019

Study Of Charge Carrier Transport In Graphene And Graphite As Two Dimensional And Quasi-Two Dimensional Materials And Their Interfaces, Nalat Sornkhampan

FIU Electronic Theses and Dissertations

Evidence of superconductivity in phosphorous-doped graphite and graphene has been observed at temperatures in the vicinity of 260 K. This evidence includes transport current, magnetic susceptibility, Hall and Nernst measurements. All of these measurements indicate a transition of a type II superconductor without a phase of type I until below the limits of the measurement capabilities.

Vortex states are inferred from periodically repeated steps in the R vs. T characteristics of Highly Oriented Pyrolytic Graphite and exfoliated doped multilayer graphene. The presence of vortices has been confirmed with thermal gradient driven Nernst measurements. Magnetic susceptibility measurements have shown results qualitatively …


Graphene Based Functional Devices: A Short Review, Rong Wang, Xin Gang Ren, Ze Yan, Li (Lijun) Jun Jiang, Wei E.I. Sha, Guang Cun Shan Feb 2019

Graphene Based Functional Devices: A Short Review, Rong Wang, Xin Gang Ren, Ze Yan, Li (Lijun) Jun Jiang, Wei E.I. Sha, Guang Cun Shan

Electrical and Computer Engineering Faculty Research & Creative Works

Graphene is an ideal 2D material system bridging electronic and photonic devices. It also breaks the fundamental speed and size limits by electronics and photonics, respectively. Graphene offers multiple functions of signal transmission, emission, modulation, and detection in a broad band, high speed, compact size, and low loss. Here, we have a brief view of graphene based functional devices at microwave, terahertz, and optical frequencies. Their fundamental physics and computational models were discussed as well.