Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Two-Step Enhanced Deep Learning Approach For Electromagnetic Inverse Scattering Problems, He Ming Yao, Wei E.I. Sha, Lijun Jiang Nov 2019

Two-Step Enhanced Deep Learning Approach For Electromagnetic Inverse Scattering Problems, He Ming Yao, Wei E.I. Sha, Lijun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

In this letter, a new deep learning (DL) approach is proposed to solve the electromagnetic inverse scattering (EMIS) problems. The conventional methods for solving inverse problems face various challenges including strong ill-conditions, high contrast, expensive computation cost, and unavoidable intrinsic nonlinearity. To overcome these issues, we propose a new two-step machine learning based approach. In the first step, a complex-valued deep convolutional neural network is employed to retrieve initial contrasts (permittivity's) of dielectric scatterers from measured scattering data. In the second step, the previously obtained contrasts are input into a complex-valued deep residual convolutional neural network to refine the reconstruction …


Source Reconstruction Method Based On Machine Learning Algorithms, He Ming Yao, Lijun Jiang, Wei E.I. Sha Jun 2019

Source Reconstruction Method Based On Machine Learning Algorithms, He Ming Yao, Lijun Jiang, Wei E.I. Sha

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a new source reconstruction method (SRM) based on deep learning. The conventional SRM usually requires oversampled measurements data to ensure higher accuracy. Thus, conventional SRM numerical system is usually highly singular. A deep convolutional neural network (ConvNet) is proposed to reconstruct the equivalent sources of the target to overcome difficulty. The deep ConvNet allows us to employ less data samples. Besides, the ill-conditioned numerical system can be effectively avoided. Numerical examples are presented to demonstrate the feasibility and accuracy of the proposed method. Its performance is also compared with the traditional neural network and interpolation method. Moreover, …


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available …


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available …


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available …


Vision Sensor Based Action Recognition For Improving Efficiency And Quality Under The Environment Of Industry 4.0, Zipeng Wang, Ruwen Qin, Jihong Yan, Chaozhong Guo May 2019

Vision Sensor Based Action Recognition For Improving Efficiency And Quality Under The Environment Of Industry 4.0, Zipeng Wang, Ruwen Qin, Jihong Yan, Chaozhong Guo

Engineering Management and Systems Engineering Faculty Research & Creative Works

In the environment of industry 4.0, human beings are still an important influencing factor of efficiency and quality which are the core of product life cycle management. Hence, monitoring and analyzing humans' actions are essential. This paper proposes a vision sensor based method to evaluate the accuracy of operators' actions. Each action of operators is recognized in real time by a Convolutional Neural Network (CNN) based classification model in which hierarchical clustering is introduced to minimize the effects of action uncertainty. Warnings are triggered when incorrect actions occur in real time and applications of action analysis of workers on a …


Pathological Speech Classification Using A Convolutional Neural Network, Nam H. Trinh, Darragh O'Brien Jan 2019

Pathological Speech Classification Using A Convolutional Neural Network, Nam H. Trinh, Darragh O'Brien

Session 2: Deep Learning for Computer Vision

Convolutional Neural Networks (CNNs) have enabled significant improvements across a number of applications in computer vision such as object detection, face recognition and image classification. An audio signal can be visually represented as a spectrogram that captures the time-varying frequency content of the signal. This paper describes how a CNN can be applied to the spectrogram of an audio signal to distinguish pathological from healthy speech. We propose a CNN structure and implement it using Keras to test the approach. A classification accuracy of over 95% is obtained in experiments on two public pathological speech datasets.


Solid Spherical Energy (Sse) Cnns For Efficient 3d Medical Image Analysis, Vincent Andrearczyk, Valentin Oreiller, Julien Fageot, Xavier Montet, Adrien Depeursinge Jan 2019

Solid Spherical Energy (Sse) Cnns For Efficient 3d Medical Image Analysis, Vincent Andrearczyk, Valentin Oreiller, Julien Fageot, Xavier Montet, Adrien Depeursinge

Session 2: Deep Learning for Computer Vision

Invariance to local rotation, to differentiate from the global rotation of images and objects, is required in various texture analysis problems. It has led to several breakthrough methods such as local binary patterns, maximum response and steerable filterbanks. In particular, textures in medical images often exhibit local structures at arbitrary orientations. Locally Rotation Invariant (LRI) Convolutional Neural Networks (CNN) were recently proposed using 3D steerable filters to combine LRI with Directional Sensitivity (DS). The steerability avoids the expensive cost of convolutions with rotated kernels and comes with a parametric representation that results in a drastic reduction of the number of …


Applying Deep Learning Approach To The Far-Field Subwavelength Imaging Based On Near-Field Resonant Metalens At Microwave Frequencies, He Ming Yao, Min Li, Lijun Jiang Jan 2019

Applying Deep Learning Approach To The Far-Field Subwavelength Imaging Based On Near-Field Resonant Metalens At Microwave Frequencies, He Ming Yao, Min Li, Lijun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we utilize the deep learning approach for the subwavelength imaging in far-field, which is realized by the near-field resonant metalens at microwave frequencies. The resonating metalens consisting of split-ring resonators (SRRs) are equipped with the strong magnetic coupling ability and can convert evanescent waves into propagating waves using the localized resonant modes. The propagating waves in the far-field are utilized as the input of a trained deep convolutional neural network (CNN) to realize the imaging. The training data for establishing the deep CNN are obtained by the EM simulation tool. Besides, the white Gaussian noise is added …


A Statistical Approach To Provide Explainable Convolutional Neural Network Parameter Optimization, Saman Akbarzadeh, Selam Ahderom, Kamal Alameh Jan 2019

A Statistical Approach To Provide Explainable Convolutional Neural Network Parameter Optimization, Saman Akbarzadeh, Selam Ahderom, Kamal Alameh

Research outputs 2014 to 2021

Algorithms based on convolutional neural networks (CNNs) have been great attention in image processing due to their ability to find patterns and recognize objects in a wide range of scientific and industrial applications. Finding the best network and optimizing its hyperparameters for a specific application are central challenges for CNNs. Most state-of-the-art CNNs are manually designed, while techniques for automatically finding the best architecture and hyperparameters are computationally intensive, and hence, there is a need to severely limit their search space. This paper proposes a fast statistical method for CNN parameter optimization, which can be applied in many CNN applications …


End-To-End Learning Via A Convolutional Neural Network For Cancer Cell Line Classification, Darlington A. Akogo, Xavier-Lewis Palmer Jan 2019

End-To-End Learning Via A Convolutional Neural Network For Cancer Cell Line Classification, Darlington A. Akogo, Xavier-Lewis Palmer

Electrical & Computer Engineering Faculty Publications

Purpose: Computer vision for automated analysis of cells and tissues usually include extracting features from images before analyzing such features via various machine learning and machine vision algorithms. The purpose of this work is to explore and demonstrate the ability of a Convolutional Neural Network (CNN) to classify cells pictured via brightfield microscopy without the need of any feature extraction, using a minimum of images, improving work-flows that involve cancer cell identification.

Design/methodology/approach: The methodology involved a quantitative measure of the performance of a Convolutional Neural Network in distinguishing between two cancer lines. In their approach, they trained, validated and …