Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Experimental Study Of Condensation In A Thermoacoustic Cooler With Various 3d Printed Regenerators Using Water Vapor As The Working Fluid, Aibek Bekkulov, Andrew Luthen, Ben Xu Dec 2019

Experimental Study Of Condensation In A Thermoacoustic Cooler With Various 3d Printed Regenerators Using Water Vapor As The Working Fluid, Aibek Bekkulov, Andrew Luthen, Ben Xu

Mechanical Engineering Faculty Publications and Presentations

Thermoacoustics (TA) deals with the conversion of heat into sound and vice versa. The device that transfers energy from a low temperature reservoir to a high temperature one by utilizing acoustic work is called TA cooler (TAC). The main components of a typical TAC are a resonator, a porous regenerator (e.g. stack of parallel plates) and two heat exchangers. The thermoacoustic phenomenon takes place in the regenerator where a nonzero temperature gradient is imposed, and interacts with the sound wave. The low temperature at the cold end of TAC can be used to condense water from the humid air and …


Investigation Into The Thermodynamics And Kinetics Of The Binding Of Cu2+ And Pb2+ To Tis2 Nanoparticles Synthesized Using A Solvothermal Process, Jesus Cantu, John Valle, Kenneth Flores, Diego Gonzalez, Carolina Valdes, Jorge Lopez, Victoria Padilla, Mataz Alcoutlabi, Jason Parsons Dec 2019

Investigation Into The Thermodynamics And Kinetics Of The Binding Of Cu2+ And Pb2+ To Tis2 Nanoparticles Synthesized Using A Solvothermal Process, Jesus Cantu, John Valle, Kenneth Flores, Diego Gonzalez, Carolina Valdes, Jorge Lopez, Victoria Padilla, Mataz Alcoutlabi, Jason Parsons

Mechanical Engineering Faculty Publications and Presentations

In the present study, titanium (IV) sulfide (TiS2) was synthesized and investigated for the removal of Cu2+ and Pb2+ ions from aqueous solutions. TiS2 nanoparticles synthesized through a solvothermal synthesis were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The average particle size for the TiS2 material was determined to be 8.03 ± 0.98 nm from the diffraction pattern. Studies were performed to examine the effects of pH, temperature, time, and interfering ions on the binding of Cu2+ and Pb2+ to the TiS2. As well isotherm studies were performed to determine the binding capacity of TiS2 for both …


Energy And Exergy Analysis Of A Novel Multiple-Effect Vapor Chamber Distillation System For High-Salinity Wastewater Treatment, Hamidreza Shabgard, Ramkumar Parthasarathy, Ben Xu Dec 2019

Energy And Exergy Analysis Of A Novel Multiple-Effect Vapor Chamber Distillation System For High-Salinity Wastewater Treatment, Hamidreza Shabgard, Ramkumar Parthasarathy, Ben Xu

Mechanical Engineering Faculty Publications and Presentations

A novel modular thermally-driven multiple-effect vapor chamber distillation (MVCD) system is presented for compact and portable desalination applications. The MVCD system consists of several vapor chambers connected in series with the condenser section of the upstream vapor chambers serving as the evaporator section of the following effect. A heat transfer model accounting for the major thermal resistances was developed to predict the heat transfer and distilled water production rates. A mass transfer analysis was performed to evaluate the effect of the accumulation of the non-condensable gasses within the chambers. An exergy analysis was also conducted to quantify the efficiency of …


Novel Silica Filled Deep Eutectic Solvent Based Nanofluids For Energy Transportation, Changhui Liu, Hui Fang, Xinjian Liu, Ben Xu, Zhonghao Rao Nov 2019

Novel Silica Filled Deep Eutectic Solvent Based Nanofluids For Energy Transportation, Changhui Liu, Hui Fang, Xinjian Liu, Ben Xu, Zhonghao Rao

Mechanical Engineering Faculty Publications and Presentations

Liquid range of nanofluids is a crucial parameter as it intensively determines their application temperature scope. Meanwhile, improved thermal conductivity and stability are of great significances and comprise the main fundamental research topics of nanofluids. In this work, 2-butoxy-3,4-dihydropyran (DP), produced from a convenient one-pot three-component reaction in water, was employed as dual lipophilic brusher and metal nanoparticle anchor. It was found that DP was able to enhance the dispersing ability and thermal conductivity of SiO2 nanoparticle filled deep eutectic solvent (DES) based nanofluids simultaneously. The key to the success of this protocol mainly relies on the electrophilic property and …


Sub-Optimal Tracking In Switched Systems With Controlled Subsystems And Fixed-Mode Sequence Using Approximate Dynamic Programming, Tohid Sardarmehni, Xingyong Song Nov 2019

Sub-Optimal Tracking In Switched Systems With Controlled Subsystems And Fixed-Mode Sequence Using Approximate Dynamic Programming, Tohid Sardarmehni, Xingyong Song

Mechanical Engineering Faculty Publications and Presentations

Optimal tracking in switched systems with controlled subsystem and Discrete-time (DT) dynamics is investigated. A feedback control policy is generated such that a) the system tracks the desired reference signal, and b) the optimal switching time instants are sought. For finding the optimal solution, approximate dynamic programming is used. Simulation results are provided to illustrate the effectiveness of the solution.


Pressure Effect On An Ocean-Based Humidification-Dehumidification Desalination Process, Yingchen Yang Oct 2019

Pressure Effect On An Ocean-Based Humidification-Dehumidification Desalination Process, Yingchen Yang

Mechanical Engineering Faculty Publications and Presentations

A new humidification-dehumidification (HDH) desalination process is proposed and analyzed. Being ocean based, the process does not produce any brine. It is largely powered jointly by solar energy, wind energy, and various types of ocean energies in a nearly natural way. A vacuum pump is employed to drive the air circulation throughout the HDH process. It is the only unit that consumes electricity. The HDH process is analyzed under various conditions, including using a low pressure (as low as to 0.2 atm) for humidification and the ambient pressure for dehumidification, running the entire HDH process around a low pressure (as …


Centrifugally Spun Α-Fe2o3/Tio2/Carbon Composite Fibers As Anode Materials For Lithium-Ion Batteries, Luis Zuniga, Gabriel Gonzalez, Roberto Orrostieta Chavez, Jason C. Myers, Timothy P. Lodge, Mataz Alcoutlabi Sep 2019

Centrifugally Spun Α-Fe2o3/Tio2/Carbon Composite Fibers As Anode Materials For Lithium-Ion Batteries, Luis Zuniga, Gabriel Gonzalez, Roberto Orrostieta Chavez, Jason C. Myers, Timothy P. Lodge, Mataz Alcoutlabi

Mechanical Engineering Faculty Publications and Presentations

We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solution containing PVP/iron (III) acetylacetonate/titanium (IV) butoxide/ethanol/acetic acid followed by oxidation at 200 °C in air and then carbonization at 550 °C under flowing argon. The morphology and structure of the composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), …


Evaluating The Rheological And Tribological Behaviors Of Coconut Oil Modified With Nanoparticles As Lubricant Additives, Vicente Cortes, Javier A. Ortega Aug 2019

Evaluating The Rheological And Tribological Behaviors Of Coconut Oil Modified With Nanoparticles As Lubricant Additives, Vicente Cortes, Javier A. Ortega

Mechanical Engineering Faculty Publications and Presentations

In metal-forming processes, the use of lubricants for providing desirable tribological conditions at the tool–workpiece interface is critical to increase the material formability and prolonging tool life. Nowadays, the depletion of crude oil reserves in the world and the global concern in protecting the environment from contamination have renewed interest in developing environmentally-friendly lubricants derived from alternative sources such as vegetable oils. In the present study, the rheological and tribological behavior of coconut oil modified with nanoparticle additives was experimentally evaluated. Two different nanoparticle additives were investigated: Silicon dioxide (SiO2) and copper oxide (CuO). For the two conditions, …


Thermal And Physico-Mechanical Characterizations Of Thromboresistant Polyurethane Films, Aaron C. Wilson, Shih-Feng Chou, Roberto Lozano, Jonathan Y. Chen, Pierre F. Neuenschwander Aug 2019

Thermal And Physico-Mechanical Characterizations Of Thromboresistant Polyurethane Films, Aaron C. Wilson, Shih-Feng Chou, Roberto Lozano, Jonathan Y. Chen, Pierre F. Neuenschwander

Mechanical Engineering Faculty Publications and Presentations

Hemocompatibility remains a challenge for injectable and/or implantable medical devices, and thromboresistant coatings appear to be one of the most attractive methods to down-regulate the unwanted enzymatic reactions that promote the formation of blood clots. Among all polymeric materials, polyurethanes (PUs) are a class of biomaterials with excellent biocompatibility and bioinertness that are suitable for the use of thromboresistant coatings. In this work, we investigated the thermal and physico-mechanical behaviors of ester-based and ether-based PU films for potential uses in thromboresistant coatings. Our results show that poly(ester urethane) and poly(ether urethane) films exhibited characteristic peaks corresponding to their molecular configurations. …


Design And Validation Of A Modular Instrument To Measure Torque And Energy Consumption In Industrial Operations, Mary De La Cruz, Ramiro Gonzalez, Jesus A. Gomez, Atilano Mendoza, Javier A. Ortega Aug 2019

Design And Validation Of A Modular Instrument To Measure Torque And Energy Consumption In Industrial Operations, Mary De La Cruz, Ramiro Gonzalez, Jesus A. Gomez, Atilano Mendoza, Javier A. Ortega

Mechanical Engineering Faculty Publications and Presentations

A modular torque measuring instrument capable of performing tapping torque tests (TTT) according to the ASTM D-5619 standard was designed, developed, and validated. With this new instrument, the performance of different lubricants can be evaluated in terms of frictional torque and energy consumption during tapping processes. This instrument can adapt onto any conventional milling machine or CNC machine and operate under various machining operations such as tapping, drilling, and other processes. To validate the design and performance of this new device, three commercially available lubricants were evaluated. From the three tested conditions, the results showed good repeatability, with consistent results …


Raman Spectroscopy And Molecular Bases Of Elasticity: Sebs-Graphite Composites, Dorina M. Chipara, Denis M. Panaitescu, Karen Lozano, Raluca Augusta Gabor, Cristian Andi Nicolae, Mircea Chipara Aug 2019

Raman Spectroscopy And Molecular Bases Of Elasticity: Sebs-Graphite Composites, Dorina M. Chipara, Denis M. Panaitescu, Karen Lozano, Raluca Augusta Gabor, Cristian Andi Nicolae, Mircea Chipara

Mechanical Engineering Faculty Publications and Presentations

For polymer-based (nano)composites, the strain/stress induced by reinforcing agents within the polymer may be identified and quantified at molecular level by Raman spectroscopy. The manuscript focuses on correlations between mechanical properties of composites and their Raman spectra, with emphasis on the displacements of the position(s) of Raman lines due to local strains/stress. Investigations on polystyrene-(ethylene-co-butylene)-styrene block copolymers filled with various amounts of graphite are reported. The modifications of Raman's parameters (line intensity, position, and width) upon the loading with graphite are analyzed. Raman revealed a strong dampening of molecular vibrations within the polymer, upon the loading with graphite, …


On The Role Of Sidewalls In The Transition From Straight To Sinuous Bedforms, ‪Nadim Zgheib, S. Balachandar Aug 2019

On The Role Of Sidewalls In The Transition From Straight To Sinuous Bedforms, ‪Nadim Zgheib, S. Balachandar

Mechanical Engineering Faculty Publications and Presentations

We present results from direct numerical simulation on the transition from straight-crested to sinuous-crested bedforms. The numerical setup is representative of turbulent open channel flow over an erodible sediment bed at a shear Reynolds number of Reτ = 180. The immersed boundary method accounts for the presence of the bed. The simulations are two-way coupled such that the turbulent flow can erode and modify the bed, and in turn, the bed modifies the overlying flow. Coupling from the flow to the bed occurs through the Exner equation, while back coupling from the bed to the flow is achieved by …


Prognostics Models For Railroad Tapered Roller Bearings With Spall Defects On Inner Or Outer Rings, Constantine Tarawneh, Jennifer Lima, Nancy De Los Santos, Robert Jones Jul 2019

Prognostics Models For Railroad Tapered Roller Bearings With Spall Defects On Inner Or Outer Rings, Constantine Tarawneh, Jennifer Lima, Nancy De Los Santos, Robert Jones

Mechanical Engineering Faculty Publications and Presentations

Rolling contact fatigue (RCF) is one of the major causes of failure in railroad bearings used in freight service. Subsurface inclusions resulting from impurities in the steel used to fabricate the bearings initiate subsurface fatigue cracks, which propagate upwards and cause spalling of the rolling surfaces. These spalls start small and propagate as continued operation induces additional crack formation and spalling. Studies have shown that the bearing temperature is not a good indicator of spall initiation. In many instances, the temperature of the bearing increases markedly only when the spall has spread across major portions of the raceway. In contrast, …


Multidirectional Pin-On-Disk Testing Device To Evaluate The Cross-Shear Effect On The Wear Of Biocompatible Materials, Vicente Cortes, Carlos A. Rodriguez Betancourth, Javier A. Ortega, Hasina Huq Jul 2019

Multidirectional Pin-On-Disk Testing Device To Evaluate The Cross-Shear Effect On The Wear Of Biocompatible Materials, Vicente Cortes, Carlos A. Rodriguez Betancourth, Javier A. Ortega, Hasina Huq

Mechanical Engineering Faculty Publications and Presentations

One of the main causes of hip prostheses failure is the premature wear of their components. Multi-directional motion or “cross-shear” motion has been identified as one of the most significant factors affecting the wear rate of UHMWPE in total hip joint replacement prostheses. To better evaluate the effect of this cross-shear motion on the tribological behavior of different biomaterials, a new wear testing device has been designed and developed. This new instrument is capable to reproduce the “cross-shear” effect with bidirectional motion on bearing materials and to determine coefficient of friction (COF) between surfaces during testing. To validate the functionality …


Prototyping A Conductive Polymer Steering Pad For Rail Freight Service, Anthony A. Villarreal, Constantine Tarawneh, Miguel Ontiveros, James Aranda, Robert Jones Jul 2019

Prototyping A Conductive Polymer Steering Pad For Rail Freight Service, Anthony A. Villarreal, Constantine Tarawneh, Miguel Ontiveros, James Aranda, Robert Jones

Mechanical Engineering Faculty Publications and Presentations

The AdapterPlus™ steering pad is a polymer component on a railcar that helps to reduce stresses on the axle as a railcar rounds a curve. One railway application requires a minimum of 240 mA to be passed through the steering pad to the rail, which activates air valves that control automated cargo gates. Currently, two copper studs are inserted into the pad to provide a conductive path. However, after continuous cyclic loading caused by normal service operation, the copper studs deform, wear, and eventually lose contact between the two surfaces rendering the pad nonconductive. One proposed solution to this problem …


Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos Jul 2019

Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high-risk defects. Many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device that sits on the side of the …


Implementation Of Visual Supplements To Strengthen Pedagogical Practices And Enhance The Physical Understanding Of Fundamental Concepts In Engineering Mechanics, Eleazar Marquez, Samuel Garcia, Samuel Molina Jun 2019

Implementation Of Visual Supplements To Strengthen Pedagogical Practices And Enhance The Physical Understanding Of Fundamental Concepts In Engineering Mechanics, Eleazar Marquez, Samuel Garcia, Samuel Molina

Mechanical Engineering Faculty Publications and Presentations

Mechanical Engineering is a discipline highly dependent on designing and implementing mechanical, thermal, or energy systems for the improvement of the human environment. Thus being a proficient Engineer involves having a strong mathematical background and a thorough physical understanding on how systems operate in order to apply analytical or numerical schemes during a design process. However, most of the students’ academic development is centered on deriving tedious equations and solving textbook problems, which are difficult to visualize and physically understand, and cloud their intuitive nature to comprehend a problem on its entirety. These conventional approaches and methods of disseminating content …


Creating A Learning Environment That Engages Engineering Students In The Classroom Via Communication Strategies, Eleazar Marquez, Samuel Garcia Jun 2019

Creating A Learning Environment That Engages Engineering Students In The Classroom Via Communication Strategies, Eleazar Marquez, Samuel Garcia

Mechanical Engineering Faculty Publications and Presentations

In this research effort, the authors claim that possessing technical knowledge is not a sufficient asset to establish a learning environment that renders engagement with engineering students during lecture sessions, but rather the integration of various communication strategies that support students’ academic development. Research has noted that classroom context and conditions impact the degree of student learning and engagement and are further enhanced when students feel comfortable communicating with the instructor and with their peers. If such acquaintance is nonexistent, student participation may be stifled and limited despite the technical concerns arising during lecture sessions. Thus, it is imperative for …


Linear Stability Analysis Of Subaqueous Bedforms Using Direct Numerical Simulations, ‪Nadim Zgheib, S. Balachandar Feb 2019

Linear Stability Analysis Of Subaqueous Bedforms Using Direct Numerical Simulations, ‪Nadim Zgheib, S. Balachandar

Mechanical Engineering Faculty Publications and Presentations

We present results on the formation of ripples from linear stability analysis. The analysis is coupled with direct numerical simulations of turbulent open-channel flow over a fixed sinusoidal bed. The presence of the sediment bed is accounted for using the immersed boundary method. The simulations are used to extract the bed shear stress and consequently the sediment transport rate. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology and the sediment flux is obtained from the three-dimensional turbulent simulations. The stability analysis is performed on the Exner equation, whose …


Forcespinning Technique For The Production Of Poly(D,L-Lactic Acid) Submicrometer Fibers: Process–Morphology–Properties Relationship, Victoria Padilla-Gainza, Graciela Morales, Heriberto Rodríguez-Tobías, Karen Lozano Feb 2019

Forcespinning Technique For The Production Of Poly(D,L-Lactic Acid) Submicrometer Fibers: Process–Morphology–Properties Relationship, Victoria Padilla-Gainza, Graciela Morales, Heriberto Rodríguez-Tobías, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

This work addresses a systematic study for the process development and optimization of poly(d,l-lactic acid) (PDLLA) submicrometer fibers utilizing the centrifugal spinning technique known as Forcespinning. This study analyzes the effect of polymer concentration (8, 10, and 12 wt %) and angular speed on the fiber morphology, diameter distribution, and fiber yield. The increase in polymer concentration and angular speed favored the formation of continuous and homogeneous submicrometer fibers with an absence of bead formation and higher output. The optimal conditions were established considering the morphological characteristics that exhibit a greater surface area (homogeneous and submicrometer fibers); and they were …


Electrical Properties And Electromagnetic Interference Shielding Effectiveness Of Interlayered Systems Composed By Carbon Nanotube Filled Carbon Nanofiber Mats And Polymer Composites, Claudia A. Ramirez-Herrera, Homero Gonzalez, Felipe De La Torre, Laura Benitez, Jose G. Cabanas-Moreno, Karen Lozano Feb 2019

Electrical Properties And Electromagnetic Interference Shielding Effectiveness Of Interlayered Systems Composed By Carbon Nanotube Filled Carbon Nanofiber Mats And Polymer Composites, Claudia A. Ramirez-Herrera, Homero Gonzalez, Felipe De La Torre, Laura Benitez, Jose G. Cabanas-Moreno, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

The demand for multifunctional requirements in aerospace, military, automobile, sports, and energy applications has encouraged the investigation of new composite materials. This study focuses on the development of multiwall carbon nanotube (MWCNT) filled polypropylene composites and carbon nanofiber composite mats. The developed systems were then used to prepare interlayered composites that exhibited improved electrical conductivity and electromagnetic interference (EMI) shielding efficiency. MWCNT-carbon nanofiber composite mats were developed by centrifugally spinning mixtures of MWCNT suspended in aqueous poly(vinyl alcohol) solutions. The developed nanofibers were then dehydrated under sulfuric acid vapors and then heat treated. Interlayered samples were fabricated using a nanoreinforced …


Fabrication And Characterization Of Centrifugally Spun Poly(Acrylic Acid) Nanofibers, David De La Garza, Francisco De Santiago, Luis Materon, Mircea Chipara, Mataz Alcoutlabi Jan 2019

Fabrication And Characterization Of Centrifugally Spun Poly(Acrylic Acid) Nanofibers, David De La Garza, Francisco De Santiago, Luis Materon, Mircea Chipara, Mataz Alcoutlabi

Mechanical Engineering Faculty Publications and Presentations

The production of poly(acrylic acid) (PAA) nanofibers by the centrifugal spinning of PAA solutions in water is reported. The effect of the spinneret rotational speed and concentration of PAA solutions on the diameter of nanofibers and on their quality (assessed by the absence of beads) is discussed. The main physical properties of PAA such as glass-transition temperature (Tg) are studied in detail and compared to the feature of the as-received homopolymer. It is shown that the glass-transition temperature of the bulk PAA and PAA nanofibers (as measured by differential scanning calorimetry) depends on the heating rate according …


Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Zhaotai Wang, Ben Xu, Shuisheng Jiang Jan 2019

Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Zhaotai Wang, Ben Xu, Shuisheng Jiang

Mechanical Engineering Faculty Publications and Presentations

In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann Model was developed by incorporating multi-relaxation-time (MRT) collision matrix, large DR external force term, surface tension adjustment external force term and solid-liquid pseudopotential force. It was found that the improved model can precisely capture the two-phase interface at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle size to droplet diameter ( 1 χ ), ratio of channel width to droplet diameter ( 2 χ ) on the deformation and breakup of droplet when impacting on a square obstacle …


Nurturing Brilliance In Engineering: Creating Research Venues For Undergraduate Underrepresented Minorites In Engineering As An Initiative From Faculty Members That Foster Academic Inclusion, Development, And Postgraduation Instruction, Eleazar Marquez, Samuel Garcia Jan 2019

Nurturing Brilliance In Engineering: Creating Research Venues For Undergraduate Underrepresented Minorites In Engineering As An Initiative From Faculty Members That Foster Academic Inclusion, Development, And Postgraduation Instruction, Eleazar Marquez, Samuel Garcia

Mechanical Engineering Faculty Publications and Presentations

In this study, a new model for attracting, advancing, and advocating for the participation of underrepresented minorities in research venues is proposed with the intention of fostering academic inclusion, development, and post-graduation mentorship. It involves developing and nurturing a disposition from faculty by proactively identifying students via classroom interaction, performance, and academic aptitude and extending a personal invitation to collaborate on the research team. Current research opportunities for engineering undergraduates at tier-one institutions are obtained by students' incentive to communicate with faculty members via email or office hours. Despite the available opportunities, only a limited number of students are selected …


The Educational Value Of Modelling Complex Thermodynamic Systems With System Dynamics Software, Stephen Crown, Constantine Tarawneh Jan 2019

The Educational Value Of Modelling Complex Thermodynamic Systems With System Dynamics Software, Stephen Crown, Constantine Tarawneh

Mechanical Engineering Faculty Publications and Presentations

The solution of problems involving complex thermodynamic systems often occupies much of a students' time and can be a distraction from them developing a clear understanding of system components, interaction of subsystems, modelling simplifications and assumptions, and design optimization. Refocusing students on the fundamental concepts of thermal systems design and analysis is possible with the introduction of system modelling software that carries some of the load of repetitive calculation required for complex systems. Models of thermodynamic systems encountered in an advanced undergraduate thermodynamics course were developed by students (some provided to students) to solve homework problems of complex steam power …