Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

University of Wollongong

Australian Institute for Innovative Materials - Papers

Storage

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Lotus Rhizome-Like S/N-C With Embedded Ws2 For Superior Sodium Storage, Xiu Li, Yonggang Sun, Xun Xu, Yunxiao Wang, Shulei Chou, Anmin Cao, Libao Chen, Shi Xue Dou Jan 2019

Lotus Rhizome-Like S/N-C With Embedded Ws2 For Superior Sodium Storage, Xiu Li, Yonggang Sun, Xun Xu, Yunxiao Wang, Shulei Chou, Anmin Cao, Libao Chen, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Sodium-ion batteries (SIBs) hold great promise as power sources because of their low cost and decent electrochemical behavior. Nevertheless, the poor rate performance and long-term cycling capability of anode materials in SIBs still impede their practical application in smart grids and electric vehicles. Herein, we design a delicate method to embed WS2 nanosheets into lotus rhizome-like heteroatom-doped carbon nanofibers with abundant hierarchical tubes inside, forming WS2@sulfur and nitrogen-doped carbon nanofibers (WS2@S/N-C). The WS2@S/N-C nanofibers exhibit a large discharge capacity of 381 mA h g-1 at 100 mA g-1, excellent rate capacity of 108 mA h g-1 at 30 A g-1, …


Coupling Topological Insulator Snsb2te4 Nanodots With Highly Doped Graphene For High-Rate Energy Storage, Zhibin Wu, Gemeng Liang, Wei Kong Pang, Tengfei Zhou, Zhenxiang Cheng, Wenchao Zhang, Ye Liu, Bernt Johannessen, Zaiping Guo Jan 2019

Coupling Topological Insulator Snsb2te4 Nanodots With Highly Doped Graphene For High-Rate Energy Storage, Zhibin Wu, Gemeng Liang, Wei Kong Pang, Tengfei Zhou, Zhenxiang Cheng, Wenchao Zhang, Ye Liu, Bernt Johannessen, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Topological insulators have spurred worldwide interest, but their advantageous properties have scarcely been explored in terms of electrochemical energy storage, and their high-rate capability and long-term cycling stability still remain a significant challenge to harvest. p-Type topological insulator SnSb2Te4 nanodots anchoring on few-layered graphene (SnSb2Te4/G) are synthesized as a stable anode for high-rate lithium-ion batteries and potassium-ion batteries through a ball-milling method. These SnSb2Te4/G composite electrodes show ultralong cycle lifespan (478 mAh g−1 at 1 A g−1 after 1000 cycles) and excellent rate capability (remaining 373 mAh g−1 even at 10 A g−1) in Li-ion storage owing to the rapid …


Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou Jan 2019

Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Despite the significant progress in the fabrication of advanced electrode materials, complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions, morphologies, and chemistries. Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species, we propose the use of skin collagen fibers for the template crafting of a novel multicore-shell Fe2N-carbon framework anode configuration, composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles (Fe2N@N-CFBs). In the resultant heterostructure, the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well …


Structural Engineering Of Hierarchical Micro‐Nanostructured Ge-C Framework By Controlling The Nucleation For Ultralong Life Li Storage, Shilin Zhang, Yang Zheng, Xuejuan Huang, Jian Hong, Bin Cao, Junnan Hao, Qining Fan, Tengfei Zhou, Zaiping Guo Jan 2019

Structural Engineering Of Hierarchical Micro‐Nanostructured Ge-C Framework By Controlling The Nucleation For Ultralong Life Li Storage, Shilin Zhang, Yang Zheng, Xuejuan Huang, Jian Hong, Bin Cao, Junnan Hao, Qining Fan, Tengfei Zhou, Zaiping Guo

Australian Institute for Innovative Materials - Papers

The rational design of a proper electrode structure with high energy and power densities, long cycling lifespan, and low cost still remains a significant challenge for developing advanced energy storage systems. Germanium is a highly promising anode material for high-performance lithium ion batteries due to its large specific capacity and remarkable rate capability. Nevertheless, poor cycling stability and high price significantly limit its practical application. Herein, a facile and scalable structural engineering strategy is proposed by controlling the nucleation to fabricate a unique hierarchical micro-nanostructured Ge-C framework, featuring high tap density, reduced Ge content, superb structural stability, and a 3D …