Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Chemical Stability And Performance Influence Of Choice Substituents And Core Conjugation Of Organic Semiconductors, Jack Ly Mar 2019

Chemical Stability And Performance Influence Of Choice Substituents And Core Conjugation Of Organic Semiconductors, Jack Ly

Doctoral Dissertations

Realizing organic based active materials for electronic devices, such as thin film transistors and photovoltaics, has been long sought after. Advancement in the field driven by chemists, engineers, and physicists alike have bolstered organic based semiconductor performance levels to rival those of traditional inorganic amorphous silicon-based devices. Within the field of organic semiconductors (OSC), two categories of active materials may be generalized: (1) polymer and (2) small molecule semiconductors. Each class of OSC inherently have their own advantages and disadvantages. Polymer semiconductors (PSC) allow a wide range in tunability via choice monomers and side chain engineering to illicit desirable energy …