Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Selected Works

PDF

Collagen

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Collagen-Mimetic Hydrogels Promote Human Endothelial Cell Adhesion, Migration And Phenotypic Maturation, Dany J. Munoz Pinto, V. R. Guiza-Arguello, S. M. Becerra-Bayona, J. Erndt-Marino, S. Samavedi, S. Malmut, B. Russell, M. Höök, M. S. Hahn Apr 2019

Collagen-Mimetic Hydrogels Promote Human Endothelial Cell Adhesion, Migration And Phenotypic Maturation, Dany J. Munoz Pinto, V. R. Guiza-Arguello, S. M. Becerra-Bayona, J. Erndt-Marino, S. Samavedi, S. Malmut, B. Russell, M. Höök, M. S. Hahn

Dany J. Munoz Pinto

This work evaluates the response of human aortic endothelial cells (HAECs) to thromboresistant collagen-mimetic hydrogel coatings toward improving the biocompatibility of existing "off-the-shelf" small-caliber vascular grafts. Specifically, bioactive hydrogels-previously shown to support α1/α2 integrin-mediated cell adhesion but to resist platelet activation-were fabricated by combining poly(ethylene glycol) (PEG) with a 120 kDa, triple-helical collagen-mimetic protein (Scl2-2) containing the GFPGER adhesion sequence. Analysis of HAECs seeded onto the resulting PEG-Scl2-2 hydrogels demonstrated that HAEC adhesion increased with increasing Scl2-2 concentration, while HAEC migration rate decreased over this same concentration range. In addition, evaluation of HAEC phenotype at confluence indicated significant differences in …


Characterization Of Sequential Collagen-Poly(Ethylene Glycol) Diacrylate Interpenetrating Networks And Initial Assessment Of Their Potential For Vascular Tissue Engineering, Dany J. Munoz Pinto, Andrea C. Jimenez-Vergara, T. P. Gharat, M. S. Hahn Apr 2019

Characterization Of Sequential Collagen-Poly(Ethylene Glycol) Diacrylate Interpenetrating Networks And Initial Assessment Of Their Potential For Vascular Tissue Engineering, Dany J. Munoz Pinto, Andrea C. Jimenez-Vergara, T. P. Gharat, M. S. Hahn

Dany J. Munoz Pinto

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due in part to the capacity of collagen to promote robust cell adhesion and elongation. However, collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly susceptible to cell-mediated contraction. In the current work, we develop and characterize a sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently …


Polydopamine And Collagen Coated Micro-Grated Polydimethylsiloxane For Human Mesenchymal Stem Cell Culture, Dhavan Sharma, Wenkai Jia, Fei Long, Shweta Pati, Qing-Hui Chen, Yibing Qyang, Bruce P. Lee, Chang Kyoung Choi, Feng Zhao Mar 2019

Polydopamine And Collagen Coated Micro-Grated Polydimethylsiloxane For Human Mesenchymal Stem Cell Culture, Dhavan Sharma, Wenkai Jia, Fei Long, Shweta Pati, Qing-Hui Chen, Yibing Qyang, Bruce P. Lee, Chang Kyoung Choi, Feng Zhao

Bruce Lee

Natural tissues contain highly organized cellular architecture. One of the major challenges in tissue engineering is to develop engineered tissue constructs that promote cellular growth in physiological directionality. To address this issue, micro-patterned polydimethylsiloxane (PDMS) substrates have been widely used in cell sheet engineering due to their low microfabrication cost, higher stability, excellent biocompatibility, and most importantly, ability to guide cellular growth and patterning. However, the current methods for PDMS surface modification either require a complicated procedure or generate a non-uniform surface coating, leading to the production of poor-quality cell layers. A simple and efficient surface coating method is critically …