Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Model Based Analysis Of The Accuracy And Precision Of Auscultatory Blood Pressure Measurements In Patients With Atrial Fibrillation, Charles F. Babbs Sep 2019

Model Based Analysis Of The Accuracy And Precision Of Auscultatory Blood Pressure Measurements In Patients With Atrial Fibrillation, Charles F. Babbs

Weldon School of Biomedical Engineering Faculty Working Papers

Accurate measurement of blood pressure in the presence of atrial fibrillation remains an open problem. The present study combines the techniques of stochastic mathematical modeling with physiological models of the systemic circulation, cuff, and arm (1) to explore mechanisms underlying both the lack of accuracy and the lack of precision in cuff-based arterial pressure measurements during atrial fibrillation and (2) to develop strategies to correct for errors. Both the cardiovascular system and the measurement technique are described using mathematics, including both numerical techniques and analytical probability theory. Preliminary results with numerical models suggested that, despite variability, average systolic pressures tend …


Computations Of Top-Down Attention By Modulating V1 Dynamics, David Berga, Xavier Otazu May 2019

Computations Of Top-Down Attention By Modulating V1 Dynamics, David Berga, Xavier Otazu

MODVIS Workshop

The human visual system processes information defining what is visually conspicuous (saliency) to our perception, guiding eye movements towards certain objects depending on scene context and its feature characteristics. However, attention has been known to be biased by top-down influences (relevance), which define voluntary eye movements driven by goal-directed behavior and memory. We propose a unified model of the visual cortex able to predict, among other effects, top-down visual attention and saccadic eye movements. First, we simulate activations of early mechanisms of the visual system (RGC/LGN), by processing distinct image chromatic opponencies with Gabor-like filters. Second, we use a cortical …