Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Discontinuous Galerkin Vs. Ie Method For Electromagnetic Scattering From Composite Metallic And Dielectric Structures, Y.-Y. Zhu, Q.-M. Cai, R. Zhang, X. Cao, Y.-W. Zhao, B. Gao, Jun Fan Sep 2019

Discontinuous Galerkin Vs. Ie Method For Electromagnetic Scattering From Composite Metallic And Dielectric Structures, Y.-Y. Zhu, Q.-M. Cai, R. Zhang, X. Cao, Y.-W. Zhao, B. Gao, Jun Fan

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, an efficient volume surface integral equation (VSIE) method with nonconformal discretization is developed for the analysis of electromagnetic scattering from composite metallic and dielectric (CMD) structures. This VSIE scheme utilizes curved tetrahedral (triangular) elements for volume (surface) modeling and the associated CRWG (CSWG) basis functions for volume current (surface) current modeling. Further, a discontinuous Galerkin (DG) volume integral equation (VIE) method and a DG surface integral equation (SIE) approach are adopted for dielectric and metallic parts, respectively, which allow both conformal and nonconformal volume/surface discretization improving meshing flexibility considerably. Numerical results are provided to demonstrate the accuracy, …


Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data, Ryan G. Smith, R. Knight Apr 2019

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data, Ryan G. Smith, R. Knight

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Land subsidence as a result of groundwater overpumping in the San Joaquin Valley, California, is associated with the loss of groundwater storage and aquifer contamination. Although the physical processes governing land subsidence are well understood, building predictive models of subsidence is challenging because so much subsurface information is required to do so accurately. For the first time, we integrate airborne electromagnetic data, representing the subsurface, with subsidence data, mapped by interferometric synthetic aperture radar (InSAR), to model deformation. By combining both data sets, we are able to solve for hydrologic and geophysical properties of the subsurface to effectively model the …


Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data: Dataset, Ryan G. Smith, R. Knight Jan 2019

Modeling Land Subsidence Using Insar And Airborne Electromagnetic Data: Dataset, Ryan G. Smith, R. Knight

Research Data

Supporting dataset for article published in Water Resources Research, Volume 55, Issue 4, pages 2801-2819