Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Molecular Dynamics Simulations Of Interaction Of Dna Nucleotides And Lignin Oligomers With Small Molecules And Interfaces, Xinjie Tong Nov 2019

Molecular Dynamics Simulations Of Interaction Of Dna Nucleotides And Lignin Oligomers With Small Molecules And Interfaces, Xinjie Tong

LSU Doctoral Dissertations

Molecular dynamics (MD) simulations of interaction of DNA nucleotides with self-assembled monolayers (SAMs) provide valuable information that is critical to the development of a new DNA sequencing technique. We investigated the interactions and transport characteristics of mononucleotides moving through nanoslits with SAMs-covered surfaces. Our simulations focused on nanoslits in which the walls were composed of three different types of SAMs: methylformyl terminated, methyl terminated, and phenoxy terminated. The results demonstrated that the phenoxy terminated surfaces have the shortest required nanoslits length for nucleotides separation.

Using MD simulations, we also investigated the interaction of mono-lignin and oligo-lignols with lipid bilayers and …


Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi Nov 2019

Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi

LSU Doctoral Dissertations

Phase field method has become a popular tool to investigate the microstructure evolution during the solidification. Quantitative predictions using this method is still limited, and in this dissertation, we try to study this problem from different perspectives.

Most of the phase field models consider the solid-liquid interface to be in local equilibrium. Solidification during some manufacturing processes like selective laser melting, and electron beam additive manufacturing is rapid and far from equilibrium which can result in supersaturated solid solutions, segregation-free crystals, or metastable phases. Before obtaining any conclusions from the phase field simulations, we must know the answer for “which …


An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins Nov 2019

An Investigation Of High-Speed Consolidation And Repair Of Carbon Fiber - Epoxy Composites Through Ultrasonic Welding, David A. Hoskins

LSU Master's Theses

Adhesive repair of carbon fiber composite structures is commonly done on damaged structures to extend the service life. This method requires careful preparation of the damaged surface with intricate steps to ensure good bonding between the repair patch and the parent structure by means of an adhesive film. As with many forms of composite manufacturing, it is required to perform vacuum bagging, debulking, and a heated cure depending on the resin. All these steps make the repair process costly and time consuming.

In this present work, an alternative method of repair is investigated which explores the experimental feasibility of using …


Vanadium-Based Nanomaterials For Improved Zn Ion Storage, Jianwei Lai Oct 2019

Vanadium-Based Nanomaterials For Improved Zn Ion Storage, Jianwei Lai

LSU Master's Theses

Rechargeable aqueous zinc-ion batteries (ZIBs) have been intensively studied as novel promising large-scale energy storage systems recently, owing to their advantages of high abundance, cost effectiveness, and high safety. However, the development of suitable cathode materials with superior performance are severely hampered by the sluggish kinetics of Zn2+ with divalent charge in the host structure.

Our Work demonstrates boosting the electrochemical performances of nanostructured cathode materials for aqueous ZIBs. The first project is focused on the interlayer-expanded V6O13∙nH2O nanosheets as promising cathodes. Benefiting from the synthetic merits of its favorable architecture and expanded …


Reduction Of Structural Damage From The Thermal Expansion Of Concrete Using Multifunctional Materials, Darren Hartl, Mirmilad Mirsayar Oct 2019

Reduction Of Structural Damage From The Thermal Expansion Of Concrete Using Multifunctional Materials, Darren Hartl, Mirmilad Mirsayar

Data

Corresponding data set for Tran-SET Project No. 18STTAM01. Abstract of the final report is stated below for reference:

"This study leveraged past successes in the analysis and design of shape memory alloy (SMA) components to address the issue of thermal expansion in concrete structures. Since the SMA used in the current work is relatively cheaper than other common SMAs (less than $50/lb compared to NiTi which is $200/lb due to difficulties in processing), it is anticipated that the findings of the study could be implemented in real infrastructures made of concrete, asphalt concrete, and other complex large infrastructure. Low-cost Fe-SMAs …


Soil-Recycled Aggregate-Geopolymer Road Base/Subbase Mixtures: Steps Towards Sustainability, Mohammad Khattak, Daniel Odion Oct 2019

Soil-Recycled Aggregate-Geopolymer Road Base/Subbase Mixtures: Steps Towards Sustainability, Mohammad Khattak, Daniel Odion

Data

Corresponding data set for Tran-SET Project No. 18GTLSU10. Abstract of the final report is stated below for reference:

"This study deals with the development of Soil-Geopolymer mixtures using flyash, alkali activator and recycled aggregates (RAG) including recycled concrete (RCA) and reclaimed asphalt (RAP) as an alternative to soil-cement for pavement base and subbase layers. Several mix constituents were varied such as flyash type and content, RCA and RAP content and ratio of sodium silicate and sodium hydroxide. Experiment design was established and mechanical and durability characteristics of Soil-RAG-Geopolymer mixtures were evaluated and then compared to the conventional soil-cement mixtures. The …


Reduction Of Structural Damage From The Thermal Expansion Of Concrete Using Multifunctional Materials, Darren Hartl, Mirmilad Mirsayar Oct 2019

Reduction Of Structural Damage From The Thermal Expansion Of Concrete Using Multifunctional Materials, Darren Hartl, Mirmilad Mirsayar

Publications

This study leveraged past successes in the analysis and design of shape memory alloy (SMA) components to address the issue of thermal expansion in concrete structures. Since the SMA used in the current work is relatively cheaper than other common SMAs (less than $50/lb compared to NiTi which is $200/lb due to difficulties in processing), it is anticipated that the findings of the study could be implemented in real infrastructures made of concrete, asphalt concrete, and other complex large infrastructure. Low-cost Fe-SMAs and other multifunctional materials can be considered as a replacement for components made of steel (e.g., in reinforced …


Soil-Recycled Aggregate-Geopolymer Road Base/Subbase Mixtures: Steps Towards Sustainability, Mohammad Khattak, Daniel Odion Oct 2019

Soil-Recycled Aggregate-Geopolymer Road Base/Subbase Mixtures: Steps Towards Sustainability, Mohammad Khattak, Daniel Odion

Publications

This study deals with the development of Soil-Geopolymer mixtures using flyash, alkali activator and recycled aggregates (RAG) including recycled concrete (RCA) and reclaimed asphalt (RAP) as an alternative to soil-cement for pavement base and subbase layers. Several mix constituents were varied such as flyash type and content, RCA and RAP content and ratio of sodium silicate and sodium hydroxide. Experiment design was established and mechanical and durability characteristics of Soil-RAG-Geopolymer mixtures were evaluated and then compared to the conventional soil-cement mixtures. The results of the testing showed that for the selected Soil-RAG-Geopolymer mixtures the strength, stiffness, permanent deformation, and durability …


Development Of Geopolymer-Based Cement And Soil Stabilizers For Transportation Infrastructure, Miladin Radovic, Anand Puppala Sep 2019

Development Of Geopolymer-Based Cement And Soil Stabilizers For Transportation Infrastructure, Miladin Radovic, Anand Puppala

Data

Corresponding data set for Tran-SET Project No. 18CTAM03. Abstract of the final report is stated below for reference:

"Geopolymer Cement (GPC) has drawn much attention in the recent years as an alternative to Ordinary Portland Cement (OPC) for soil stabilization, pavements, bridges and other transportation structures due to their good mechanical properties in comparison to OPC. In addition, GPC can be processed at room temperatures from aqueous solutions of waste materials (e.g. fly ash) or abundant natural sources (e.g. clay), thereby significantly reducing CO2 production associated with processing of OPC. As such, GPC proves to be a more sustainable and …


Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das Sep 2019

Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das

Data

Corresponding data set for Tran-SET Project No. 18PLSU13. Abstract of the final report is stated below for reference:

"Reflective cracking is considered one of the most important issues that causes premature deterioration of composite pavements. Many types of mitigation methods have been studied in the past. However, they are either not effective in delaying the reflective cracking, or they only extend the service life by a few years. To address this critical issue and significantly extend the service life of the composite pavement, in this research, a ductile interlayer made of engineered cementitious composites (ECC) was proposed. It was hypothesized …


Toward Non-Corrosion And Highly Sustainable Structural Members By Using Ultra-High-Performance Materials For Transportation Infrastructure, Shih-Ho Chao, Ashish Karmacharya Sep 2019

Toward Non-Corrosion And Highly Sustainable Structural Members By Using Ultra-High-Performance Materials For Transportation Infrastructure, Shih-Ho Chao, Ashish Karmacharya

Data

Corresponding data set for Tran-SET Project No. 18STUTA01. Abstract of the final report is stated below for reference:

"This research focused on investigating a highly sustainable and efficient reinforced concrete structural member for future infrastructure by utilizing emerging high-performance materials. These materials include ultra-high-performance fiber-reinforced concrete (UHP-FRC) and corrosion-resistant high-strength fiber-reinforced polymer (FRP) bars. Four reduced scale UHP-FRC specimens were tested under large displacement reversals to prove the proposed new ductile-concrete strong-reinforcement (DCSR) design concept by fully utilizing these ultra-high-performance materials. Micro steel fibers were incorporated into three specimens and ultra-high molecular weight polyethylene fibers were blended into the fourth …


Development Of Geopolymer-Based Cement And Soil Stabilizers For Transportation Infrastructure, Miladin Radovic, Anand Puppala Sep 2019

Development Of Geopolymer-Based Cement And Soil Stabilizers For Transportation Infrastructure, Miladin Radovic, Anand Puppala

Publications

Geopolymer Cement (GPC) has drawn much attention in the recent years as an alternative to Ordinary Portland Cement (OPC) for soil stabilization, pavements, bridges and other transportation structures due to their good mechanical properties in comparison to OPC. In addition, GPC can be processed at room temperatures from aqueous solutions of waste materials (e.g. fly ash) or abundant natural sources (e.g. clay), thereby significantly reducing CO2 production associated with processing of OPC. As such, GPC proves to be a more sustainable and environmentally friendly alternative than OPC. This research explores methods to develop GPC with desired properties and evaluate their …


Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das Sep 2019

Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das

Publications

Reflective cracking is considered one of the most important issues that causes premature deterioration of composite pavements. Many types of mitigation methods have been studied in the past. However, they are either not effective in delaying the reflective cracking, or they only extend the service life by a few years. To address this critical issue and significantly extend the service life of the composite pavement, in this research, a ductile interlayer made of engineered cementitious composites (ECC) was proposed. It was hypothesized that by adding a thin layer of highly ductile ECC material between the existing pavement and overlay, reflective …


Investigation Of Physical And Dynamic Properties Of High Porous Concrete, Ildar Akhmadullin Sep 2019

Investigation Of Physical And Dynamic Properties Of High Porous Concrete, Ildar Akhmadullin

Publications

This project pursued two main objectives: (1) providing opportunities to Baton Rouge Community College (BRCC) students to develop hands-on laboratory skills and exposure to the transportation field, and (2) investigating porous concrete properties. Several BRCC student groups performed the work presented within this report; students prepared samples with different porosity and permeability according to standard specifications. The testing of the samples was performed at the Louisiana Transportation Research Center (LTRC) facility under the supervision of LTRC specialists. Findings indicate that the porosity of samples is backward proportional to the compression strength. This function is not linear but can be estimated …


Toward Non-Corrosion And Highly Sustainable Structural Members By Using Ultra-High-Performance Materials For Transportation Infrastructure, Shih-Ho Chao, Ashish Karmacharya Sep 2019

Toward Non-Corrosion And Highly Sustainable Structural Members By Using Ultra-High-Performance Materials For Transportation Infrastructure, Shih-Ho Chao, Ashish Karmacharya

Publications

This research focused on investigating a highly sustainable and efficient reinforced concrete structural member for future infrastructure by utilizing emerging high-performance materials. These materials include ultra-high-performance fiber-reinforced concrete (UHP-FRC) and corrosion-resistant high-strength fiber-reinforced polymer (FRP) bars. Four reduced scale UHP-FRC specimens were tested under large displacement reversals to prove the proposed new ductile-concrete strong-reinforcement (DCSR) design concept by fully utilizing these ultra-high-performance materials. Micro steel fibers were incorporated into three specimens and ultra-high molecular weight polyethylene fibers were blended into the fourth specimen. One specimen with ASTM A1035 MMFX high-strength steel rebars, one with high-strength glass fiber reinforced polymer (GFRP) …


Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam Aug 2019

Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam

Data

Corresponding data set for Tran-SET Project No. 18CASU03. Abstract of the final report is stated below for reference:

"In the way of finding sustainable development, the flowable fill is a relatively new construction technology. Flowable fill is a self-compacting material, which has been developed in recent years. Flowable fill has been used for different applications such as backfilling walls, sewer trenches, bridge abutments, conduit trenches, pile excavations, and retaining walls. This study examines the potential uses of Rice Husk Ash (RHA) as a sustainable cementitious material (SCM) in the preparation of flowable fill concrete. (RHA is an agricultural by-product of …


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Data

Corresponding data set for Tran-SET Project No. 18CLSU02. Abstract of the final report is stated below for reference:

"Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured …


Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez-Wing, Michele Barbato Aug 2019

Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez-Wing, Michele Barbato

Data

Corresponding data set for Tran-SET Project No. 18CLSU03. Abstract of the final report is stated below for reference:

"The objective of this study was to evaluate the use of sugarcane bagasse ash (SCBA) as a partial replacement of cement in concrete for road pavement application. The study explored the pozzolanic activity of SCBA produced from three different processing methodologies (i.e., raw SCBA, controlled SCBA and post-processed SCBA). The experimental results revealed that SCBA produced by the controlled burning of sugarcane bagasse fiber (SBF) at 650°C and grinding (C-650), presented the maximum pozzolanic activity. However, this SCBA production process was deemed …


Uhpc Shear Keys In Concrete Bridge Superstructures, Craig Newtson, Brad Weldon, Elsy Flores, Jordan Varbel, William Toledo Aug 2019

Uhpc Shear Keys In Concrete Bridge Superstructures, Craig Newtson, Brad Weldon, Elsy Flores, Jordan Varbel, William Toledo

Data

Corresponding data set for Tran-SET Project No. 18CNMS01. Abstract of the final report is stated below for reference:

"This research investigated the use of locally produced ultra-high performance concrete (UHPC) as a grouting material to repair deteriorated shear keys. Shear keys are used in adjacent girder superstructures to produce monolithic behavior and load transfer across the structure. Shear key durability is a concern since shear key degradation can jeopardize the integrity of the structure. Transportation agencies have reported that 75% of distress in adjacent girder bridges is due to cracking and de-bonding along shear keys. Previous research has shown that …


Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan Aug 2019

Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan

Data

Corresponding data set for Tran-SET Project No. 18BASU02. Abstract of the final report is stated below for reference:

"For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the elastomeric or plastomeric polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. Thus, the main research goal of this study is to recommend alternative test method(s), which …


Disaster Resilient And Self-Assessing Multifunctional Transportation Structures, Ibrahim Karaman, Darren Hartl Aug 2019

Disaster Resilient And Self-Assessing Multifunctional Transportation Structures, Ibrahim Karaman, Darren Hartl

Data

Corresponding data set for Tran-SET Project No. 18STTAM02. Abstract of the final report is stated below for reference:

"This research designs and characterizes multifunctional materials, in particular inexpensive shape memory alloys, for transportation structures that possess excellent mechanical properties and self-sensing capabilities for strengthening and health monitoring. The properties are the Fe-SMAs are sensitive to part size in that the grain size of the material, which can be grown to several inches, should exceed the smallest dimension of the part. In the current work, maximum part size of the large dimension Fe-SMA rods were determined through detailed microstructural investigations. Samples …


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Publications

Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured in wet-dry cycles to determine their feasibility in Region 6. The results showed that the specimen groups with …


Uhpc Shear Keys In Concrete Bridge Superstructures, Craig Newtson, Brad Weldon, Elsy Flores, Jordan Varbel, William Toledo Aug 2019

Uhpc Shear Keys In Concrete Bridge Superstructures, Craig Newtson, Brad Weldon, Elsy Flores, Jordan Varbel, William Toledo

Publications

This research investigated the use of locally produced ultra-high performance concrete (UHPC) as a grouting material to repair deteriorated shear keys. Shear keys are used in adjacent girder superstructures to produce monolithic behavior and load transfer across the structure. Shear key durability is a concern since shear key degradation can jeopardize the integrity of the structure. Transportation agencies have reported that 75% of distress in adjacent girder bridges is due to cracking and de-bonding along shear keys. Previous research has shown that locally produced UHPC has excellent mechanical and durability properties. UHPC has also been shown to have good bonding …


Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan Aug 2019

Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan

Publications

For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the elastomeric or plastomeric polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. Thus, the main research goal of this study is to recommend alternative test method(s), which can possibly be pursued by using a commonly available device, a Dynamic Shear Rheometer (DSR). Three PG binders …


Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam Aug 2019

Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam

Publications

In the way of finding sustainable development, the flowable fill is a relatively new construction technology. Flowable fill is a self-compacting material, which has been developed in recent years. Flowable fill has been used for different applications such as backfilling walls, sewer trenches, bridge abutments, conduit trenches, pile excavations, and retaining walls. This study examines the potential uses of Rice Husk Ash (RHA) as a sustainable cementitious material (SCM) in the preparation of flowable fill concrete. (RHA is an agricultural by-product of the rice milling process. This study has evaluated the usage of RHA in producing low strength and self-consolidating …


Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez, Michele Barbato Aug 2019

Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez, Michele Barbato

Publications

The objective of this study was to evaluate the use of sugarcane bagasse ash (SCBA) as a partial replacement of cement in concrete for road pavement application. The study explored the pozzolanic activity of SCBA produced from three different processing methodologies (i.e., raw SCBA, controlled SCBA and post-processed SCBA). The experimental results revealed that SCBA produced by the controlled burning of sugarcane bagasse fiber (SBF) at 650°C and grinding (C-650), presented the maximum pozzolanic activity. However, this SCBA production process was deemed challenging for large-scale industrial application due to low SCBA yield (i.e., 3 to 6%). On the other hand, …


Disaster Resilient And Self-Assessing Multifunctional Transportation Structures, Ibrahim Karaman, Darren Hartl Aug 2019

Disaster Resilient And Self-Assessing Multifunctional Transportation Structures, Ibrahim Karaman, Darren Hartl

Publications

This research designs and characterizes multifunctional materials, in particular inexpensive shape memory alloys, for transportation structures that possess excellent mechanical properties and self-sensing capabilities for strengthening and health monitoring. The properties are the Fe-SMAs are sensitive to part size in that the grain size of the material, which can be grown to several inches, should exceed the smallest dimension of the part. In the current work, maximum part size of the large dimension Fe-SMA rods were determined through detailed microstructural investigations. Samples were subjected to abnormal grain growth heat treatments and found out that part size be increased up to …


Workforce Development Symposiums For Uhpc, Brad Weldon, Craig Newtson, Grace Mcmurry, Leticia Davila Aug 2019

Workforce Development Symposiums For Uhpc, Brad Weldon, Craig Newtson, Grace Mcmurry, Leticia Davila

Publications

Ultra-high performance concrete (UHPC) is a cementitious material with a dense microstructure that contributes to high compressive strengths as well as enhanced durability properties. UHPC also possesses significant post-cracking strength and ductility due to the addition of fibers. These characteristics produce a material that provides advantages over conventional concrete; however, high costs attributed to materials and production, lack of industry familiarity and knowledge, and the absence of standardized design procedures have impeded its widespread use. To help disseminate knowledge on UHPC, two workforce development symposiums on UHPC were held in Las Cruces, New Mexico. The symposiums consisted of presentations and …


High Enthalpy Storage Thermoset Network With Giant Stress And Energy Output In Rubbery State And Associated Applications, Jizhou Fan Jul 2019

High Enthalpy Storage Thermoset Network With Giant Stress And Energy Output In Rubbery State And Associated Applications, Jizhou Fan

LSU Doctoral Dissertations

In this study, a new shape memory thermoset network with giant stress and energy output in rubbery state is synthesized and studied firstly since the low output in stress and energy in rubbery state has been a bottleneck for wide-spread applications of thermoset shape memory polymers (SMPs). Traditionally, stress or energy storage in thermoset network is through entropy reduction by mechanical deformation or programming. We here report another mechanism for energy storage, which stores energy primarily through enthalpy increase by stretched bonds during programming. As compared to entropy-driven counterparts, which usually have a stable recovery stress from tenths to several …


Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio May 2019

Application Of X-Ray Grating Interferometry To Polymer/Flame Retardant Blends In Additive Manufacturing, Omoefe Joy Kio

LSU Doctoral Dissertations

X-ray grating interferometry is a nondestructive tool for visualizing the internal structures of samples. Image contrast can be generated from the absorption of X-rays, the change in phase of the beam and small-angle X-ray scattering (dark-field). The attenuation and differential phase data obtained complement each other to give the internal composition of a material and large-scale structural information. The dark-field signal reveals sub-pixel structural detail usually invisible to the attenuation and phase probe, with the potential to highlight size distribution detail in a fashion faster than conventional small-angle scattering techniques. This work applies X-ray grating interferometry to the study of …