Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

PDF

Additive manufacturing

Department of Manufacturing Engineering Faculty Research and Publications

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Micro-Ct Evaluation Of Defects In Ti-6al-4v Parts Fabricated By Metal Additive Manufacturing, Haijun Gong, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, Brent Stucker Jun 2019

Micro-Ct Evaluation Of Defects In Ti-6al-4v Parts Fabricated By Metal Additive Manufacturing, Haijun Gong, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, Brent Stucker

Department of Manufacturing Engineering Faculty Research and Publications

In this study, micro-computed tomography (CT) is utilized to detect defects of Ti-6Al-4V specimens fabricated by selective laser melting (SLM) and electron beam melting (EBM), which are two popular metal additive manufacturing methods. SLM and EBM specimens were fabricated with random defects at a specific porosity. The capability of micro-CT to evaluate inclusion defects in the SLM and EBM specimens is discussed. The porosity of EBM specimens was analyzed through image processing of CT single slices. An empirical method is also proposed to estimate the porosity of reconstructed models of the CT scan.


Rheological Properties Of Two Stainless Steel 316l Powders For Additive Manufacturing, Haijun Gong, Xiaodong Xing, Hengfeng Gu Jan 2019

Rheological Properties Of Two Stainless Steel 316l Powders For Additive Manufacturing, Haijun Gong, Xiaodong Xing, Hengfeng Gu

Department of Manufacturing Engineering Faculty Research and Publications

This study measures the rheological properties of two stainless steel 316L powders which are used for the powder-bed-fusion based additive manufacturing process. The purpose is to evaluate the newly acquired powder in comparison with the used and recycled powder, so that both powders can be mixed with each other to supplement the powder usage. The powder rheology properties, such as dynamic property, bulk property, and shear property, are tested and compared. The results and analysis confirm the compatibility of powder mixing.