Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga Feb 2019

Advanced Inflatable De-Orbit Solutions For Derelict Satellites And Orbital Debris, Aman Chandra, Greg Wilburn, Jekan Thanga

Space Traffic Management Conference

The exponential rise in small-satellites and CubeSats in Low Earth Orbit (LEO) poses important challenges for future space traffic management. At altitudes of 600 km and lower, aerodynamic drag accelerates de-orbiting of satellites. However, placement of satellites at higher altitudes required for constellations pose important challenges. The satellites will require on-board propulsion to lower their orbits to 600 km and let aerodynamic drag take-over. In this work we analyze solutions for de-orbiting satellites at altitudes of up to 3000 km. We consider a modular robotic de-orbit device that has stowed volume of a regular CubeSat. The de-orbit device would be …


Lasers For Communication And Coordination Control Of Spacecraft Swarms, Himangshu Kalita, Leonard Dean Vance, Vishnu Reddy, Jekan Thanga Feb 2019

Lasers For Communication And Coordination Control Of Spacecraft Swarms, Himangshu Kalita, Leonard Dean Vance, Vishnu Reddy, Jekan Thanga

Space Traffic Management Conference

Swarms of small spacecraft offer whole new capabilities in Earth observation, global positioning and communications compared to a large monolithic spacecraft. These small spacecraft can provide bigger apertures that increase gain in communication antennas, increase area coverage or effective resolution of distributed cameras and enable persistent observation of ground or space targets. However, there remain important challenges in operating large number of spacecrafts at once. Current methods would require a large number of ground operators monitor and actively control these spacecraft which poses challenges in terms of coordination and control which prevents the technology from scaled up in cost-effective manner. …


Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah Feb 2019

Astria Ontology: Open, Standards-Based, Data-Aggregated Representation Of Space Objects, Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, Moriba K. Jah

Space Traffic Management Conference

The necessity for standards-based ontologies for long-term sustainability of space operations and safety of increasing space flights has been well-established [6, 7]. Current ontologies, such as DARPA’s OrbitOutlook [5], are not publicly available, complicating efforts for their broad adoption. Most sensor data is siloed in proprietary databases [2] and provided only to authorized users, further complicating efforts to create a holistic view of resident space objects (RSOs) in order to enhance space situational awareness (SSA).

The ASTRIA project is developing an open data model with the goal of aggregating data about RSOs, parts, space weather, and governing policies in order …


Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner Feb 2019

Nanosat Tracking And Identification Techniques And Technologies, Mark A. Skinner

Space Traffic Management Conference

Nanosats (and CubeSats, ‘Smallsats’, etc.) are of order 10 cm in size, and are at or near the limits of what can be tracked and characterized, using existing space surveillance assets. Additionally, given the CubeSat form-factor, they are often launched in large numbers (scores), and can be virtually identical. Thus are they difficult to track and to identify.

We have identified a number of technologies that future nanosat missions could employ that would enhance the trackability and/or identification of their satellites when on-orbit. Some of these technologies require active illumination of the satellite with electromagnetic energy, either in the radio …


A Statistical Approach For Commercial Space Vehicle Integration Into The National Airspace System, Christopher Hays, Daniel Chu, Pedro Llanos Feb 2019

A Statistical Approach For Commercial Space Vehicle Integration Into The National Airspace System, Christopher Hays, Daniel Chu, Pedro Llanos

Space Traffic Management Conference

This paper explores commercial space vehicle (CSV) suborbital flight trajectories in the temporal and spatial domains for CSV integration into the National Airspace System. The research data was collected via the Suborbital Space Flight Simulator (SSFS) housed in the College of Aviation at Embry-Riddle Aeronautical University - Daytona Beach campus, and analyzed using an original MATLAB data analytics tool. This study primarily focuses on statistical trends observed in previously simulated flights supported by three Project PoSSUM (Polar Suborbital Science in the Upper Mesosphere) campaigns comprised of 34 flights and 19 control flights, and to identify relevant milestones in the CSV …


Human-In-The-Loop Landing Flare Flight Test Simulation Of The Spaceliner Orbiter, Frank Morlang Feb 2019

Human-In-The-Loop Landing Flare Flight Test Simulation Of The Spaceliner Orbiter, Frank Morlang

Space Traffic Management Conference

Against the background that all future air traffic participants are requested to act as System Wide Information Management (SWIM) communicating sub-systems by the future Single European Sky Air Traffic Management Research (SESAR) SWIM 'Intranet for ATM' concept, facing the challenge of integration of space traffic in the current Air Traffic Management (ATM) needs SWIM compliance of future commercial space transportation (CST) vehicles having “landing like an aircraft at an airport” characteristics. In order to evaluate future spacecraft cockpit procedures in a transition context from Aircraft Access to SWIM (AAtS) to Spacecraft Access to SWIM in a network wide airspace management …


Enhancing Suborbital Science Through Better Understanding Of Wind Effects, Pedro Llanos, Diane Howard Feb 2019

Enhancing Suborbital Science Through Better Understanding Of Wind Effects, Pedro Llanos, Diane Howard

Space Traffic Management Conference

This paper highlights the importance of understanding some key factors, such as winds effects, trajectory and vehicle parameters variations in order to streamline the space vehicle operations and enhance science in the upper mesosphere at about 85 km. Understanding these effects is crucial to refine current space operations and establish more robust procedures. These procedures will involve training new space operators to conduct and coordinate space operations in class E above FL600 airspace within the Air Traffic Organization (ATO).

Space vehicles such as Space Ship Two can spend up to 6 minutes in class E airspace above FL600 after launch. …


Satellite Maintenance: An Opportunity To Minimize The Kessler Effect, Bettina M. Mrusek Dr. Jan 2019

Satellite Maintenance: An Opportunity To Minimize The Kessler Effect, Bettina M. Mrusek Dr.

International Journal of Aviation, Aeronautics, and Aerospace

Recently, there has been an emphasis on the growing problem of orbital debris. While the advantages of placing satellites into space are numerous, advances in satellite technology combined with the growth of the industry have resulted with a significant amount of debris in the orbits surrounding our planet. The harshness of the space environment has also contributed to the debris, as evidenced by the number of objects currently in orbit which are not operational. As the amount of debris grows, so too does the likelihood of collisions, ultimately culminating in the Kessler Effect. However, recent advances in propulsion, advanced navigation, …


Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul Jan 2019

Effect Of Chemical Reactions On The Fluidic Thrust Vectoring Of An Axisymmetric Nozzle, Rachid Chouicha, Mohamed Sellam, Said Bergheul

International Journal of Aviation, Aeronautics, and Aerospace

Abstract:

During the last years, several thrust control systems of aerospace rocket engines have been developed. The fluidic thrust vectoring is one of them; it is simple in design and offers a substantial gain in weight and in performance. Most of studies related to this device were carried out with cold gas. It’s quite legitimate to expect that the thermophysical properties of the gases may affect considerably the flow behavior. Besides, the effects of reacting gases at high temperatures, under their effects all flow parameters like to vary.

This study aims to develop a new methodology that allows studying and …