Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 88

Full-Text Articles in Engineering

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner Dec 2019

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal …


Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner Dec 2019

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal …


Multi-Scale Modeling Of The Lamellar Unit Of Arterial Media, Hozhabr Mozafari, Lulu Wang, Yuguo Lei, Linxia Gu Nov 2019

Multi-Scale Modeling Of The Lamellar Unit Of Arterial Media, Hozhabr Mozafari, Lulu Wang, Yuguo Lei, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The heterogeneity of the lamellar unit (LU) of arterial media plays an important role in the biomechanics of artery. Current two-component (fibrous component and a homogenous matrix) constitutive model is inappropriate for capturing the micro-structural variations in the LU, such as contraction/relaxation of vascular smooth muscle cells (VSMCs), fragmentation of the elastin layer, and deposition/disruption of the collagen network. In this work, we developed a representative volume element (RVE) model with detailed micro-configurations, i.e., VSMCs at various phenotypes, collagen fibers, and elastin laminate embedded in the ground substance. The fiber architecture was generated based on its volume fraction and orientations. …


Beyond The Toolpath: Site-Specific Melt Pool Size Control Enables Printing Of Extra-Toolpath Geometry In Laserwire-Based Directed Energy Deposition, Brian T. Gibson, Bradley S. Richardson, Tayler W. Undermann, Lonnie J. Love Oct 2019

Beyond The Toolpath: Site-Specific Melt Pool Size Control Enables Printing Of Extra-Toolpath Geometry In Laserwire-Based Directed Energy Deposition, Brian T. Gibson, Bradley S. Richardson, Tayler W. Undermann, Lonnie J. Love

Department of Mechanical and Materials Engineering: Faculty Publications

A variety of techniques have been utilized in metal additive manufacturing (AM) for melt pool size management, including modeling and feed-forward approaches. In a few cases, closed-loop control has been demonstrated. In this research, closed-loop melt pool size control for large-scale, laser wire-based directed energy deposition is demonstrated with a novel modification, i.e., site-specific changes to the controller setpoint were commanded at trigger points, the locations of which were generated by the projection of a secondary geometry onto the primary three-dimensional (3D) printed component geometry. The present work shows that, through this technique, it is possible to print a specific …


Effect Of Silica Fume In Concrete On Mechanical Properties And Dynamic Behaviors Under Impact Loading, Shijun Zhao, Qing Zhang Oct 2019

Effect Of Silica Fume In Concrete On Mechanical Properties And Dynamic Behaviors Under Impact Loading, Shijun Zhao, Qing Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

The effect of silica fume (SF) in concrete on mechanical properties and dynamic behaviors was experimentally studied by split Hopkinson pressure bar (SHPB) device with pulse shaping technique. Three series of concrete with 0, 12%, and 16% SF as a cement replacement by weight were produced firstly. Then the experimental procedure for dynamic tests of concrete specimens with SF under a high loading rate was presented. Considering the mechanical performance and behaviors of the concrete mixtures, those tests were conducted under five different impact velocities. The experimental results clearly show concrete with different levels of SF is a strain-rate sensitive …


System And Method For Sensing Wind Flow Passing Over Complex Terrain, Saleh Nabi, Piyush Grover, Mithu Debnath Sep 2019

System And Method For Sensing Wind Flow Passing Over Complex Terrain, Saleh Nabi, Piyush Grover, Mithu Debnath

Department of Mechanical and Materials Engineering: Faculty Publications

A wind flow sensing system determines a first approximation of the velocity field at each of the altitudes by simulating computational fluid dynamics ( CFD ) of the wind flow with operating parameters reducing a cost function of a weighted combination of errors , determines a horizontal derivative of vertical velocity at each of the altitudes from the first approximation of the velocity fields , and determines a second approximation of the velocity fields using geometric relationships between a velocity field for each of the altitudes , projections of the measurements of radial velocities on the three - dimensional axes …


Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane Sep 2019

Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane

Faculty Publications

Additive manufacturing with conductive materials enables new approaches to printed electronics that are unachievable by standard electronics manufacturing processes. In particular, electronics can be embedded directly into structural components in nearly arbitrary 3D space. While these methods incorporate many of the same materials, the new processing methods require standard test methods to compare materials, processing conditions, and determine design limits. This work demonstrates a test method to quantitatively measure the adhesion failure of printed inks deposited on a substrate without changing the ink printing conditions. The proposed method is an adaption of single lap shear testing in which the lap …


Multi-Agent Control System And Method, Piyush Grover, Karthik Elamvazhuthi Sep 2019

Multi-Agent Control System And Method, Piyush Grover, Karthik Elamvazhuthi

Department of Mechanical and Materials Engineering: Faculty Publications

Motion of multiple agents with identical non - linear dynamics is controlled to change density of the agents from the initial to the final density . A first control problem is formulated for optimizing a control cost of changing density of the agents from the initial density to the final density subject to dynamics of the agents in a density space . The first control problem , which is a non - linear non - convex problem over a multi - agent control and a density of the agents , is trans formed into a second control problem over the …


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP …


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP …


Aircraft Hydraulic Systems - Fundamentals, Nihad E. Daidzic Sep 2019

Aircraft Hydraulic Systems - Fundamentals, Nihad E. Daidzic

Aviation Department Publications

Aircraft hydraulic systems are essential non-propulsive power systems. Hydraulic power systems are used to power major functional aircraft systems, such as flight controls (primary and secondary), friction braking, nose gear steering, thrust-reversers, operating heavy cargo doors, etc.


Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton Sep 2019

Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton

Faculty Publications

In this work, two AM technologies were utilized to compare the effectiveness of fabricating a simple electronic device with a conductive trace and hollow cylinder representative of ‘printed packaging’ that would survive harsh environmental conditions. The printed packaging cylinder delineates printed potting for electronics packaging. An nScrypt direct write (DW) system was the primary manufacturing system but a developing technology—coined large area projection sintering (LAPS)—manufactured a subset of samples for comparison. The tests follow Military Standard (MIL STD) 883K and include resiliency evaluation for die shear strength, temperature cycling, thermal shock, and high G loading by mechanical shock. Results indicate …


Experimental Evaluation Of Self-Expandable Metallic Tracheobronchial Stents, Yanli Wang, Pengfei Dong, Jingyao Ke, Xiang Shen, Zongming Li, Kewei Ren, Xinwei Han, Linxia Gu Aug 2019

Experimental Evaluation Of Self-Expandable Metallic Tracheobronchial Stents, Yanli Wang, Pengfei Dong, Jingyao Ke, Xiang Shen, Zongming Li, Kewei Ren, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The self-expandable metallic stents have been widely used in tracheobronchial obstruction or fistulation, including the J-shaped and Y-shaped stents, named after the shape of the branch-stem junction of the stent. However, there is scarce data on the mechanical performance of these tracheobronchial stents, which is essential for optimal stent implantation. In this work, eight self-expandable metallic tracheobronchial stents in three types (i.e., straight, J-shaped, and Y-shaped), with or without cover, were characterized. The compression resistance of the stems was investigated through both compression and indentation tests. The bending resistance of the branches in the J-shaped and Y-shaped stents was assessed …


Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma Aug 2019

Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma

Department of Mechanical and Materials Engineering: Faculty Publications

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings …


The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim Aug 2019

The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then, …


Wetting Metamorphosis Of Hydrophobic Fluoropolymer Coatings Submerged In Water And Ultrasonically Vibrated, Matthew Trapuzzano, Nathan B. Crane, Rasim Guldiken, Andrés Tejada-Martínez Aug 2019

Wetting Metamorphosis Of Hydrophobic Fluoropolymer Coatings Submerged In Water And Ultrasonically Vibrated, Matthew Trapuzzano, Nathan B. Crane, Rasim Guldiken, Andrés Tejada-Martínez

Faculty Publications

Many important processes, from manufacture of integrated circuit boards, to an insect’s ability to walk on water, depend on the wetting of liquids on surfaces. Wetting is commonly controlled through material selection, coatings, and/or surface texture. However, wetting is sensitive to environmental conditions. In particular, some hydrophobic fluoropolymer coatings are sensitive to extended water exposure as evidenced by a declining contact angle and increasing contact angle hysteresis. Understanding “degradation” of these coatings is critical to applications that employ them. The durability of a series of fluoropolymer coatings were tested by measuring the contact angle before, during, and after extended submersion …


On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang Aug 2019

On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We previously reported the finding of a linear correlation between the change of energy dissipation (ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid …


Binder Jetting: A Review Of Process, Materials, And Methods, Mohsen Ziaee, Nathan B. Crane Aug 2019

Binder Jetting: A Review Of Process, Materials, And Methods, Mohsen Ziaee, Nathan B. Crane

Faculty Publications

Binder Jet printing is an additive manufacturing technique that dispenses liquid binding agent on powder. Layers are formed repeatedly to build up a physical article. Binder jetting (BJ) can be adapted to almost any powder with high production rates. The BJ process utilizes a broad range of technologies including printing methods, powder deposition, dynamic binder/powder interaction, and post-processing methods. A wide variety of materials have been demonstrated including polymers, metals, and ceramics, but a common challenge is developing printing and post-processing methods that maximize part performance. This article presents a broad review of technologies and approaches that have been applied …


Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei Jul 2019

Observations Of Shear Stress Effects On Staphylococcus Aureus Biofilm Formation, Erica Sherman, Kenneth W. Bayles, Derek Moormeir, Jennifer Endres, Timothy Wei

Department of Mechanical and Materials Engineering: Faculty Publications

Staphylococcus aureus bacteria form biofilms and distinctive microcolony or “tower” structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form …


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process …


Method For Fabrication Of A Soft-Matter Printed Circuit Board, Carmel Majidi, Tong Lu, Eric J. Markvicka Jul 2019

Method For Fabrication Of A Soft-Matter Printed Circuit Board, Carmel Majidi, Tong Lu, Eric J. Markvicka

Department of Mechanical and Materials Engineering: Faculty Publications

A fabrication process for soft - matter printed circuit boards is disclosed in which traces of liquid - phase Ga - In eutectic ( eGaIn ) are patterned with UV laser micromachining ( UVLM ) . The terminals of the elastomer - sealed LM circuit connect to the surface mounted chips through vertically aligned columns of eGaIn - coated ferromagnetic micro spheres that are embedded within an interfacial elastomer layer .


Many-Objective Hybrid Optimization Under Uncertainty With Applications, Sohail Reddy Jun 2019

Many-Objective Hybrid Optimization Under Uncertainty With Applications, Sohail Reddy

FIU Electronic Theses and Dissertations

A novel method for solving many-objective optimization problems under uncertainty was developed. It is well known that no single optimization algorithm performs best for all problems. Therefore, the developed method, a many-objective hybrid optimizer (MOHO), uses five constitutive algorithms and actively switches between them throughout the optimization process allowing for robust optimization. MOHO monitors the progress made by each of the five algorithms and allows the best performing algorithm more attempts at finding the optimum. This removes the need for user input for selecting algorithm as the best performing algorithm is automatically selected thereby increasing the probability of converging to …


Toward A Fast And Accurate Modeling Strategy For Thermal Management In Air-Cooled Data Centers, Long Tran Bao Phan Jun 2019

Toward A Fast And Accurate Modeling Strategy For Thermal Management In Air-Cooled Data Centers, Long Tran Bao Phan

FIU Electronic Theses and Dissertations

Computational fluid dynamics (CFD) has become a popular tool compared to experimental measurement for thermal management in data centers. However, it is very time-consuming and resource-intensive when used to model large-scale data centers, and may not be ready for real-time thermal monitoring. In this thesis, the two main goals are first to develop rapid flow simulation to reduce the computing time while maintaining good accuracy, and second, to develop a whole building energy simulation (BES) strategy for data center modeling. To achieve this end, hybrid modeling and model training methodologies are investigated for rapid flow simulation, and a multi-zone model …


Problem Based Learning: A Case Study From Mechanical Engineering, Kevin Delaney, Ger Nagle May 2019

Problem Based Learning: A Case Study From Mechanical Engineering, Kevin Delaney, Ger Nagle

Conference papers

Engineering graduates today must be capable of much more than solving technical problems taught in engineering school. Despite learning to quantify the performance of certain engineering objects, undergraduate students find it challenging to integrate these elements into basic design concepts through a coherent and systematic design process. To help students develop real-world engineering skills as part of their engineering education, the Mechanical Engineering Discipline in Technological University Dublin (TU Dublin) introduced Problem Based Learning (PBL) for Third Year Mechanical Engineering students in 2005.

A recent review of this teaching approach highlighted deficiencies not envisaged when the initial PBL module was …


Wearable Devices For Single-Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan May 2019

Wearable Devices For Single-Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan

Department of Mechanical and Materials Engineering: Faculty Publications

Wearable healthcare devices are mainly used for biosensing and transdermal delivery. Recent advances in wearable biosensors allow for long-term and real-time monitoring of physiological conditions at a cellular resolution. Transdermal drug delivery systems have been further scaled down, enabling wide selections of cargo, from natural molecules (e.g., insulin and glucose) to bioengineered molecules (e.g., nanoparticles). Some emerging nanopatches show promise for precise single-cell gene transfection in vivo and have advantages over conventional tools in terms of delivery efficiency, safety, and controllability of delivered dose. In this review, we discuss recent technical advances in wearable micro/nano devices with unique capabilities or …


Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang Apr 2019

Influence Of Metal Additives On Microstructure And Properties Of Amorphous Metal–Sioc Composites, Kaisheng Ming, Qing Su, Chao Gu, Dongyue Xie, Yongqiang Wang, Michael Nastasi, Jian Wang

Department of Mechanical and Materials Engineering: Faculty Publications

Strong, ductile, and irradiation-tolerant structural materials are in urgent demand for improving the safety and efficiency of advanced nuclear reactors. Amorphous ceramics could be promising candidates for high irradiation tolerance due to thermal stability and lack of crystal defects. However, they are very brittle due to plastic flow instability. Here, we realized enhanced plasticity of amorphous ceramics through compositional and microstructural engineering. Two metal–amorphous ceramic composites, Fe-SiOC and Cu-SiOC, were fabricated by magnetron sputtering. Iron atoms are preferred to form uniformly distributed nano-sized Fe-rich amorphous clusters, while copper atoms grow non-uniformly distributed nano-crystalline Cu particles. The Fe-SiOC composite exhibits high …


Restore-L Satellite Servicing Internship Final Report, Giovanni Campos Apr 2019

Restore-L Satellite Servicing Internship Final Report, Giovanni Campos

Publications and Research

This paper reviews the Restore-L mission purpose and the necessary research and simulations to meet mission specification for the Propellant Transfer Subsystem (PTS). It is essential the PTS undergoes functionality testing, environmental testing, and calculations to understand the capabilities of the system. For the testing of components from PTS, a proper test setup is required. It is vital for test hardware, such as hoses and valves, to stay in place while the test is being performed. For the test hardware to operate correctly, positioning, orientation, and alignment are critical as well. In addition to the testing, calculations for pressure drop …


Biomechanical Foot Guidance Linkage, Carl Nelson, Cale J. Stolle, Judith M. Burnfield Apr 2019

Biomechanical Foot Guidance Linkage, Carl Nelson, Cale J. Stolle, Judith M. Burnfield

Department of Mechanical and Materials Engineering: Faculty Publications

A gait replication apparatus can include a scalable mechanical mechanism configured to replicate different gaits . The scalable mechanical mechanism can include , for example , a four - bar linkage , a pantograph , a cam / Scotch - yoke mechanism , and so forth . In some embodiments , the mechanical mechanism includes a beam rotating about an axis passing proximate to its center , with a foot pedal slidably coupled with the beam , and a timing chain / belt or cable pulley - pair coupled with the foot pedal and looped about the beam . A …


Impact Of Pulse Length On The Accuracy Of Defect Depth Measurements In Pulse Thermography, James Pierce, Nathan B. Crane Apr 2019

Impact Of Pulse Length On The Accuracy Of Defect Depth Measurements In Pulse Thermography, James Pierce, Nathan B. Crane

Faculty Publications

Pulse thermography is a nondestructive testing method in which an energy pulse is applied to a surface while the surface temperature evolution is measured to detect sub surface defects and estimate their depth. This nondestructive test method was developed on the assumption of instantaneous surface heating, but recent work has shown that relatively long pulses can be used to accurately determine defect depth in polymers. This paper examines the impact of varying input pulse length on the accuracy of defect depth quantification as a function of the material properties. Simulations using both thermoplastics and metals show that measurement error is …


Soft , Multilayered Electronics For Wearable Devices And Methods To Produce The Same, Carmel Majidi, Michael D. Bartlett, Eric J. Markvicka Mar 2019

Soft , Multilayered Electronics For Wearable Devices And Methods To Produce The Same, Carmel Majidi, Michael D. Bartlett, Eric J. Markvicka

Department of Mechanical and Materials Engineering: Faculty Publications

Disclosed herein is an efficient fabrication approach to create highly customizable wearable electronics through rapid laser machining and adhesion - controlled soft materials assembly . Well - aligned , multi - layered materials can be created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as micro chip integrated circuits ( IC ) , discrete electrical components , and interconnects . These techniques are applied using commercially available materials . These materials and methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio - monitor ing …