Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

The Benchtop Hybrid - Using A Long-Term Design Project To Integrate The Mechanical Engineering Curriculum, Eric Constans, Krishan Bhatia, Jen Kadlowec, Tom Merrill, Hong Zhang, Bonnie Angelone Oct 2019

The Benchtop Hybrid - Using A Long-Term Design Project To Integrate The Mechanical Engineering Curriculum, Eric Constans, Krishan Bhatia, Jen Kadlowec, Tom Merrill, Hong Zhang, Bonnie Angelone

Henry M. Rowan College of Engineering Faculty Scholarship

This paper describes the use of a large-scale, multi-semester design project as a means of integrating six courses in the mechanical engineering curriculum. The project, a bench-scale hybrid powertrain, is built up - component by component - as students advance through the curriculum. The authors used the project to test two research hypotheses: 1) that a long-term, large-scale design project would increase long-term subject matter retention and 2) that a long-term, large-scale design project would increase students' design and problem-solving skills. The authors found that the design project had no measurable effect on long-term subject matter retention, but did have …


The Impact Of Patient-Specific Vascular Structure On Localized Cooling In The Human Heart, Nathan Paul Spangenberg Sep 2019

The Impact Of Patient-Specific Vascular Structure On Localized Cooling In The Human Heart, Nathan Paul Spangenberg

Theses and Dissertations

Acute Myocardial Infarction (AMI) is the leading cause of worldwide death and disability, and approximately 720,000 Americans will experience an AMI in 2018. Studies have shown that rapid hypothermia therapy (<35°C) before reperfusion in patients with AMI can reduce infarct size by 37%. Localized therapeutic hypothermia has proven the potential to cool heart tissue rapidly following AMI, 3°C in 5 minutes. Using Materialise Mimics digital imaging software and the finite volume method we analyzed temperature distributions in six patient-specific left main coronary artery (LMCA) models. A mock circulatory loop was used to determine the exiting temperatures of a standard 7 Fr catheter to feed into our model with flow rates ranging from 29.2 ml/min to 68.85 ml/min. Our work showed that therapeutic hypothermia (TH) temperatures were evident at the outlets of three out of all six heart models, which varied in each left anterior descending (LAD) and left circumflex (LCX) artery depending on flowrate. Results of this study indicate that biovariability in patient-specific vascular structures significantly impacts therapeutic hypothermia (TH) treatment methods. These results indicate that further research is needed to examine more accurate physiological effects, such as pulsatile flow and vessel wall thickness. Future models will be used to provide insight to guide more efficient TH device designs and operation parameters to optimize patient outcomes following AMI.


Initial Development Of A Prototype Sensor Testbed For Fetal Monitoring, Christian Beauvais Aug 2019

Initial Development Of A Prototype Sensor Testbed For Fetal Monitoring, Christian Beauvais

Theses and Dissertations

The objective of this research is to design and manufacture a device that exhibits some of the bio-physiological signals relevant to fetal health monitoring. Currently, limited options exist for testing the performance of monitoring devices such as the tocodynamometer (TOCO) and electrocardiograph (ECG) that measure the bio-physiological signals of a woman and her fetus. Sensor designers need ways of generating and acquiring signals that do not carry the ethical burden of human testing. The development of such a device, as considered in this work, may involve using muscle wire or an inflatable tube as prospective foundations for simulating uterine contraction. …


Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel Jul 2019

Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel

Theses and Dissertations

In this paper, polydimethylsiloxane (PDMS), carbon nanotubes (CNTs), and zinc oxide (ZnO) were combined to create functionalized piezoresistive and piezoelectric sensors for pressure sensing and energy harvesting. Samples were foamed to show that the increased deformability of the foam sensors makes them suitable for a range of applications including dexterous robotics, tactile sensing, energy harvesting, and biosensing. Uniform dispersion of CNTs was achieved with chloroform as the solvent. Samples were foamed using chemical blowing and scaffolding but granulated sugar at 70% porosity resulted in foamed samples with the most consistent mechanical properties. Samples underwent tensile and compressive testing for their …


Reversal Of Transmission And Reflection Based On Acoustic Metagratings With Integer Parity Design., Yangyang Fu, Chen Shen, Yanyan Cao, Lei Gao, Huanyang Chen, C T Chan, Steven A Cummer, Yadong Xu May 2019

Reversal Of Transmission And Reflection Based On Acoustic Metagratings With Integer Parity Design., Yangyang Fu, Chen Shen, Yanyan Cao, Lei Gao, Huanyang Chen, C T Chan, Steven A Cummer, Yadong Xu

Henry M. Rowan College of Engineering Faculty Scholarship

Phase gradient metagratings (PGMs) have provided unprecedented opportunities for wavefront manipulation. However, this approach suffers from fundamental limits on conversion efficiency; in some cases, higher order diffraction caused by the periodicity can be observed distinctly, while the working mechanism still is not fully understood, especially in refractive-type metagratings. Here we show, analytically and experimentally, a refractive-type metagrating which can enable anomalous reflection and refraction with almost unity efficiency over a wide incident range. A simple physical picture is presented to reveal the underlying diffraction mechanism. Interestingly, it is found that the anomalous transmission and reflection through higher order diffraction can …


2019 Student Steel Bridge Team, Kourtney Arena, Andrew Biglin, Brett Palmer, Nathaniel Maute, Kenneth Reiser, Jacob Dicks, Paul Kowaleski Apr 2019

2019 Student Steel Bridge Team, Kourtney Arena, Andrew Biglin, Brett Palmer, Nathaniel Maute, Kenneth Reiser, Jacob Dicks, Paul Kowaleski

STEM Student Research Symposium Posters

Every year AISC runs a regional and national steel bridge competition. The competition offers a chance for civil engineering students to gain valuable experience designing a bridge. In addition to this, mechanical engineering students are provided the opportunity to practice machining steel parts. For the competition, teams from participating schools are given a scenario with certain constraints to design a bridge for. At the competition, the bridges are ranked based on weight, structural efficiency, construction economy, assembly speed, deflection, aesthetics, and overall performance.

The program Risa 3D was used in order to design and perform analysis on the bridge. Using …


Power Flow-Conformal Metamirrors For Engineering Wave Reflections., Ana Díaz-Rubio, Junfei Li, Chen Shen, Steven A Cummer, Sergei A Tretyakov Feb 2019

Power Flow-Conformal Metamirrors For Engineering Wave Reflections., Ana Díaz-Rubio, Junfei Li, Chen Shen, Steven A Cummer, Sergei A Tretyakov

Henry M. Rowan College of Engineering Faculty Scholarship

Recently, the complexity behind manipulations of reflected fields by metasurfaces has been addressed, showing that, even in the simplest scenarios, nonlocal response and excitation of auxiliary evanescent fields are required for perfect field control. In this work, we introduce purely local reflective metasurfaces for arbitrary manipulations of the power distribution of reflected waves without excitation of any auxiliary evanescent field. The method is based on the analysis of the power flow distribution and the adaptation of the reflector shape to the desired distribution of incident and reflected fields. As a result, we find that these power-conformal metamirrors can be easily …


A Study Of Catalytic Microcombustion For A Portable Power Supply Device, Bhanuprakash Reddy Guggilla Jan 2019

A Study Of Catalytic Microcombustion For A Portable Power Supply Device, Bhanuprakash Reddy Guggilla

Theses and Dissertations

The essential need for portable and dense power sources has been greatly increased with the prevalence of portable electronic devices in the past decade. Catalytic combustion of hydrocarbon and oxygenated fuels has the potential to provide an alternative power source for portable electronic devices by replacing relatively today's heavy battery technology. A successful self-ignition and sustainable catalyst combustion for a variety of fuels using Platinum (Pt)-impregnated substrate was demonstrated in our previous work.

Present work explores the performance of a microcombustion thermoelectric coupled (MTC) device with improved reactor configuration design. Chemically synthesized platinum nanoparticles with particle diameters of approx. 8 …


Bipedal Model And Hybrid Zero Dynamics Of Human Walking With Foot Slip, Mitja Trkov, Kuo Chen, Jingang Yi Jan 2019

Bipedal Model And Hybrid Zero Dynamics Of Human Walking With Foot Slip, Mitja Trkov, Kuo Chen, Jingang Yi

Henry M. Rowan College of Engineering Faculty Scholarship

Foot slip is one of the major causes of falls in human locomotion. Analytical bipedal models provide an insight into the complex slip dynamics and reactive control strategies for slip-induced fall prevention. Most of the existing bipedal dynamics models are built on no foot slip assumption and cannot be used directly for such analysis. We relax the no-slip assumption and present a new bipedal model to capture and predict human walking locomotion under slip. We first validate the proposed slip walking dynamic model by tuning and optimizing the model parameters to match the experimental results. The results demonstrate that the …