Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Load Flow Analysis Of 138/69kv Substation Using Electrical Transient & Analysis Program (Etap), Vanessa Abadia Gomez Dec 2019

Load Flow Analysis Of 138/69kv Substation Using Electrical Transient & Analysis Program (Etap), Vanessa Abadia Gomez

Electrical Engineering Undergraduate Honors Theses

This paper examines the load flow analysis of a high-voltage substation using ETAP, and explores options for improving the voltage profile of the system. This study yields critical information about the system, such as the voltage drop at each feeder, the voltage at each bus, as well as real and reactive power losses at the different branches and feeders. In this power flow examination, the system’s performance is evaluated for different operating conditions, so that control measurements can be applied if necessary. The experimental results are used for proposing a plan of using fixed and switched shunt capacitor banks to …


High Frequency Ltcc Based Planar Transformer, Adithya Venkatanarayanan Dec 2019

High Frequency Ltcc Based Planar Transformer, Adithya Venkatanarayanan

Graduate Theses and Dissertations

As we move towards high power and higher frequency related technology, conventional wire-wound magnetics have their own limitations which has led path to the development of planar based magnetic materials. Nowadays more planar magnetic technology has been employed because it is easier to fabricate them. The planar magnetic is a transformer or an inductor that replaces the wire-wound transformer or inductors which generally uses copper wires. One of the main reasons why we move to planar magnetic technology is its operation at higher frequency which provides higher power density. This study explains in detail about the design and fabrication of …


Design And Optimization Of A High Power Density Silicon Carbide Traction Inverter, Tyler Adamson Dec 2019

Design And Optimization Of A High Power Density Silicon Carbide Traction Inverter, Tyler Adamson

Graduate Theses and Dissertations

This project was initiated with the goal of demonstrating a 3-phase silicon carbide based 150-kW 25 kW/L DC-AC power conversion unit capable of operation with coolant temperatures up to 90°C. The project goals were met and exceeded by first analyzing the established inverter topologies to find which one would yield the highest power density while still meeting electrical performance needs in the 150-kW range. Following topology selection, the smallest silicon carbide power module that met the electrical requirements of the system was found through experimental testing and simulation. After a power module selection was finalized, a DC link capacitor bank …


Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney Jul 2019

Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use a thermoelectric generator module to analyze the relationship between thermal and electrical energies. Using data collection sensors and analysis software, students will investigate the relationship between the temperature gradient across a thermoelectric generator module and the resulting electrical potential. Students will then use their data and analysis to solve problems relating to waste thermal energy in electrical systems and communicate their work to their peers and teacher.


Prototyping A Capacitive Sensing Device For Gesture Recognition, Chenglong Lin May 2019

Prototyping A Capacitive Sensing Device For Gesture Recognition, Chenglong Lin

Computer Science and Computer Engineering Undergraduate Honors Theses

Capacitive sensing is a technology that can detect proximity and touch. It can also be utilized to measure position and acceleration of gesture motions. This technology has many applications, such as replacing mechanical buttons in a gaming device interface, detecting respiration rate without direct contact with the skin, and providing gesture sensing capability for rehabilitation devices. In this thesis, an approach to prototype a capacitive gesture sensing device using the Eagle PCB design software is demonstrated. In addition, this paper tested and evaluated the resulting prototype device, validating the effectiveness of the approach.


Designing, Simulating, And Layout Of An Rfic Mixer In A 130 Nm Sige Process, Logan Walz May 2019

Designing, Simulating, And Layout Of An Rfic Mixer In A 130 Nm Sige Process, Logan Walz

Electrical Engineering Undergraduate Honors Theses

Wireless devices are becoming increasingly popular each day ranging from smartphones to Amazon Echo’s to wireless sensors in industry. While all of these devices are quite different in their functions and purposes, they all rely on wireless communication heavily and signal modulation techniques. One component typically seen in wireless applications like this are mixers, which are used to modulate the signal being sent and received. This thesis details the design, simulation, and layout of a radio frequency integrated circuit mixer in a 130 nanometer silicon germanium process. While the fabricated mixer did not perform to standards, many things were learned …


Characterization Of High Temperature Optocoupler For Power Electronic Systems, David Gonzalez May 2019

Characterization Of High Temperature Optocoupler For Power Electronic Systems, David Gonzalez

Electrical Engineering Undergraduate Honors Theses

High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device.


Design Of Two-Stage Operational Amplifier Using Indirect Feedback Frequency Compensation, Roderick Gomez May 2019

Design Of Two-Stage Operational Amplifier Using Indirect Feedback Frequency Compensation, Roderick Gomez

Electrical Engineering Undergraduate Honors Theses

This thesis work details the designing process of two silicon two-stage operational amplifiers with indirect feedback compensation and with Miller compensation technique. The main objective of this thesis is to study the advantages of indirect feedback compensation in comparison with Miller compensation and how this technique can be applied to meet certain design specifications. The operational amplifiers are designed with 130 nm Silicon Germanium CMOS process ideally for temperature range of 25°C to 300°C. The two op-amps are designed to have a DC gain of about 70 dB and 60 degrees of phase margin. The indirect feedback compensation design showed …


Modeling Solder Ball Array Interconnects For Power Module Optimization, Paul Swearingen May 2019

Modeling Solder Ball Array Interconnects For Power Module Optimization, Paul Swearingen

Electrical Engineering Undergraduate Honors Theses

PowerSynth is a software platform that can co-optimize power modules utilizing a 2D topology and wire bond interconnects. The novel 3D architectures being proposed at the University of Arkansas utilize solder ball interconnects instead of wire bonds. Therefore, they currently cannot be optimized using PowerSynth. This paper examines methods to accurately model the parasitic inductance of solder balls and ball grid arrays so they may be implemented into software for optimization. Proposed mathematical models are validated against ANSYS Electromagnetics Suite simulations. A comparison of the simulated data shows that mathematical models are well suited for implementation into optimization software platforms. …


Very Low Power Cockcroft-Walton Voltage Multiplier For Rf Energy Harvesting Applications, Trace Langdon May 2019

Very Low Power Cockcroft-Walton Voltage Multiplier For Rf Energy Harvesting Applications, Trace Langdon

Electrical Engineering Undergraduate Honors Theses

A device was required that could harvest the electromagnetic energy present in ambient radio frequency (RF) signals. A part of this device must convert the AC RF signal received by the antenna into a DC signal that can be used in an embedded application. Since the RF signal amplitude is small, it must first be amplified and rectified to become a usable signal. The Cockcroft-Walton voltage multiplier is a subsystem of the design which ideally converts a 100 mV AC signal coming from the antenna to a 350 mV DC signal. The output of the voltage multiplier is used to …


Synchrophasor-Based Fault Location Detection And Classification, In Power Systems, Using Artificial Intelligence, Hemal Falak May 2019

Synchrophasor-Based Fault Location Detection And Classification, In Power Systems, Using Artificial Intelligence, Hemal Falak

Graduate Theses and Dissertations

With the introduction of sophisticated electronic gadgets which cannot sustain interruption in the provision of electricity, the need to supply uninterrupted and reliable power supply, to the consumers, has become a crucial factor in the present-day world. Therefore, it is customary to correctly identify fault locations in an electrical power network, in order to rectify faults and restore power supply in the minimum possible time. Many automated fault location detection algorithms have been proposed, however, prior art requires topological and physical information of the electrical power network. This thesis presents a new method of detecting fault locations, in transmission as …