Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Optimization

Wright State University

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Design Optimization Of A Non-Axisymmetric Endwall Contour For A High-Lift Low Pressure Turbine Blade, Jacob Allen Dickel Jan 2018

Design Optimization Of A Non-Axisymmetric Endwall Contour For A High-Lift Low Pressure Turbine Blade, Jacob Allen Dickel

Browse all Theses and Dissertations

Various approaches have been used to shape the geometry at the junction of the endwall and the blade profile in high-lift low-pressure turbine passages in order to reduce the endwall losses. This thesis will detail the workflow to produce an optimized non-axisymmetric endwall contour design for a front-loaded high-lift research turbine profile. Validation of the workflow was performed and included a baseline planar and test contour case for a future optimization study. Endwall contours were defined using a series of Bezier curves across the passage to create a smooth surface. A parametric based approach was used to develop the test …


Coupling Computational Fluid Dynamics Analysis And Optimization Techniques For Scramjet Engine Design, Nathan T. Mcgillivray Jan 2018

Coupling Computational Fluid Dynamics Analysis And Optimization Techniques For Scramjet Engine Design, Nathan T. Mcgillivray

Browse all Theses and Dissertations

Various aspects of hypersonic vehicles are being rapidly explored for improved functionality. One of the main areas of consideration is the fueling of a Supersonic Combusting Ramjet (scramjet) engine. Using Computational Fluid Dynamics (CFD), computer simulations can be performed to analyze the flow physics of a scramjet. In this research, an optimization code, Dakota, is integrated with the CFD to optimize a set of parameters to maximum thrust. In this study, the fuel injection and combustion is replaced with heat sources. This simplification greatly reduces the computational requirements. Additionally, the 3D geometry is reduced to an axisymmetric 2D geometry because …


Temperature Robust Longwave Infrared Hyperspectral Change Detection, Nicholas A. Durkee Jan 2018

Temperature Robust Longwave Infrared Hyperspectral Change Detection, Nicholas A. Durkee

Browse all Theses and Dissertations

In this thesis, we develop and evaluate change detection algorithms for longwave infrared (LWIR) hyperspectral imagery. Because measured radiance in the LWIR domain depends on unknown surface temperature, care must be taken to prevent false alarms resulting from in-scene temperature differences that appear as material changes. We consider fewer variables. Examples using synthetic and measured data quantify the computational complexity of the proposed methods and demonstrate orders of magnitude reduction in false alarm rates relative to existing methods. Four strategies to mitigate this effect. In the first, pre-processing via traditional temperatureemissivity separation yields approximately temperature-invariant emissivity vectors for use in …