Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen Nov 2018

Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen

Chemical and Biological Engineering ETDs

With the increasing demand on renewable energy, the fuel cell has attracted more and more interests because of its large power density and controllable size. However, the insufficiency of element abundance and unstable expensive price of conventional platinum-based electrocatalysts used in anode and cathode makes it essential to find their substitutes. As one of the most promising candidates to be used in cathode for oxygen reduction reaction (ORR), iron-nitrogen-carbon (Fe-N-C) catalysts have been widely investigated and get commercialized recently, but still lacks comprehensive understanding on the kinetic mechanism.

This dissertation has been divided into three parts with a discussion on …


Recent Process In Transition-Metal-Oxide Based Catalysts For Oxygen Reduction Reaction, Yao Wang, Zi-Dong Wei Oct 2018

Recent Process In Transition-Metal-Oxide Based Catalysts For Oxygen Reduction Reaction, Yao Wang, Zi-Dong Wei

Journal of Electrochemistry

Transition metal oxides (TMOs) based catalysts have become the most promising catalysts to be employed in anion exchange membrane fuel cell for the sluggish oxygen reduction reaction (ORR). However, their ORR activity is still far from that of the Pt-based catalysts. Therefore, it is important to develop high performance TMO based catalysts. Electrical conductivity and intrinsic activity have been regarded as the two keys to affect the ORR activity of the TMOs based catalysts. In this review, we focused on the recent progresses in the fundamental viewpoints on the electrical conductivity and intrinsic activity of the TMOs based ORR catalysts. …


Analysis Of Fuel Cell Applied For Submarine Air Independent Propulsion (Aip) System, Jen-Chieh Lee, Tony Shay Oct 2018

Analysis Of Fuel Cell Applied For Submarine Air Independent Propulsion (Aip) System, Jen-Chieh Lee, Tony Shay

Journal of Marine Science and Technology

In this paper, the performance of a 2000-ton hybrid AIP system submarine is investigated by analyzing the weight, volume and efficiency of its propulsion system. The engine of the investigated AIP system employs a low temperature polymer electrolyte membrane fuel cell which makes use of the hydrogen and oxygen as the reactants. More specifically, the reactants of fuel cell in this study are considered from the combination of three fuel storage systems, methanol (MeOH), liquid hydrogen (LH2) and metal hydride (MH2), and two oxidant storage systems, liquid oxygen (LOX) and compressed oxygen (O2). Based on the assumed various daily propulsion …


Clean-Fuel E-Vtol Air Mobility Vehicles For Unmanned And Manned Operations, Larry D. Mccarroll, Brian Morrison, Bruce J. Holmes D.E., Faiaa, Fraes, Henry Vu Aug 2018

Clean-Fuel E-Vtol Air Mobility Vehicles For Unmanned And Manned Operations, Larry D. Mccarroll, Brian Morrison, Bruce J. Holmes D.E., Faiaa, Fraes, Henry Vu

National Training Aircraft Symposium (NTAS)

Imagine for a moment, having your very own safe, affordable, clean-fuel, point-to-any point vehicle for travel in the 21st-century 3-dimensional airspace system. Your ultra-reliable e-VTOL allows commuters to leave behind the constraints of hub-and-spoke airports, and the congestion of interstates, turnpikes and freeways. Facilitating Inter- and Intra-urban travel, such as downtown-to-airport, or metropolis-to-metropolis, or home-to-work. Perfect for dense urban environments worldwide. And all while offering the clean power of hydrogen for zero-emission travel.

This vision for efficient, clean, delay-free mobility has been talked about for decades, but always waived aside as some kind of futurist vision. This future requires tackling …


Homogeneous Reaction Kinetics Of Carbohydrates With Viologen Catalysts For Biofuel Cell Applications, Hilary Bingham Jul 2018

Homogeneous Reaction Kinetics Of Carbohydrates With Viologen Catalysts For Biofuel Cell Applications, Hilary Bingham

Theses and Dissertations

Energy usage is continually on the rise and significant efforts are being extended to provide more renewable energy. One area of exploration is the development of fuel cells, which includes biofuel cells that can extract energy from carbohydrates obtained from biomass. Recently, viologen catalysts have been shown to enhance reaction rates of energy extraction and improve carbohydrate conversion efficiencies. However, characterizing the effects of process parameters such as pH, reactant concentrations, and carbohydrate exposure time to buffer solutions with a rigorous model is lacking. This thesis characterizes the homogeneous reaction between carbohydrates and a methyl viologen catalyst to provide insights …


An Investigation Of The Effects Of The Second Pyrolysis On The Chemistry, Morphology, And Performance Of Iron-Nicarbazin Catalysts, Elizabeth B. Weiler Apr 2018

An Investigation Of The Effects Of The Second Pyrolysis On The Chemistry, Morphology, And Performance Of Iron-Nicarbazin Catalysts, Elizabeth B. Weiler

Chemical and Biological Engineering ETDs

Proton exchange membrane fuel cells offer a cost-effective, environmentally friendly, and sustainable alternative to petroleum-based power sources to the transportation sector. However, slow electrochemical reactions at the cathode of these fuel cell prevent the technology from being competitive. Iron-nitrogen-carbon based catalysts have emerged as a viable answer to this problem, yet further progress is needed to improve their performance beyond that of current state-of-the-art platinum-based catalysts, which are economically and geopolitically impractical to be a final solution. Currently, a two-step high temperature pyrolysis method has proven a promising way to synthesize iron-nitrogen-carbon catalysts for optimized performance, but there is a …


Waste Heat Recovery From Distributed Rack-Based Fuel Cells Using Thermoelectric Generators, Khosrow Ebrahimi, Alfonso Ortega, Calvin Li, Kazuaki Yazawa, Sean James Jan 2018

Waste Heat Recovery From Distributed Rack-Based Fuel Cells Using Thermoelectric Generators, Khosrow Ebrahimi, Alfonso Ortega, Calvin Li, Kazuaki Yazawa, Sean James

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Off-grid power generation has been demonstrated in data centers through the deployment of site-specific centralized power plants utilizing gas turbine or fuel cell-based power generation. Because power is centrally generated, power distribution requires a high voltage power grid within the data center with its ancillary storage and conditioning requirements and equipment. An alternative approach is a completely decentralized distributed power generation system in which fuel cells deployed within individual server racks provide power localized to that rack only. Among other advantages, such an approach also greatly increases the ability to modulate and control power to individual rack units. Because the …


New Approach In Two-Area Interconnected Agc Including Various Renewable Energy Sources Using Pso, Prasun Sanki, Mousumi Basu Jan 2018

New Approach In Two-Area Interconnected Agc Including Various Renewable Energy Sources Using Pso, Prasun Sanki, Mousumi Basu

Turkish Journal of Electrical Engineering and Computer Sciences

This paper presents a novel approach for automatic generation control (AGC) as an integrated two-area thermal-hybrid power generation system (THPGS) where thermal generators are interconnected with various renewable power generators (RPGs) like a solar power generator (SPG), wind power generator (WPG), fuel cell, and aqua electrolyzer. A comparison is carried out between the THPGS and a normal thermal power system considering proportional integral and derivative controllers. Particle swarm optimization (PSO) is used for optimizing the gain parameters of the controller. Investigation of dynamic responses is carried out considering step load perturbation as well as random load perturbation (RLP). Problems are …