Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Variable Rate Irrigation Using A Spatial Evapotranspiration Model With Remote Sensing Imagery And Soil Water Content Measurements, Sandeep Bhatti Dec 2018

Variable Rate Irrigation Using A Spatial Evapotranspiration Model With Remote Sensing Imagery And Soil Water Content Measurements, Sandeep Bhatti

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Variable rate irrigation may help in intensification of agriculture by producing more yield per unit inputs. Real time spatial information about water balance components is important for designing VRI prescription maps. This work involved use of a spatial evapotranspiration model for studying spatial variability in an agricultural field at the Eastern Nebraska Research and Extension Center near Mead, Nebraska. Imagery from unmanned aerial systems and Landsat were used as input for the spatial evapotranspiration model. Other inputs into the model were soil water content measurements from neutron probes, weather data, crop data, previous irrigation prescriptions, and soil properties for the …


An Evaluation Of Unmanned Aerial System Multispectral And Thermal Infrared Data As Information For Agricultural Crop And Irrigation Management, Mitch Maguire Jul 2018

An Evaluation Of Unmanned Aerial System Multispectral And Thermal Infrared Data As Information For Agricultural Crop And Irrigation Management, Mitch Maguire

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Spatial irrigation management has been steadily advancing over the last several years. A current issue with managing irrigation spatially on sub-field scale is the inability to readily collect the spatial field data necessary to properly manage irrigation. Multispectral and thermal infrared imagery used in informing irrigation management decisions was previously collected by satellite and manned aircraft remote sensing platforms. These remote sensing platforms pose issues concerning economic feasibility, revisit intervals, and weather factors that inhibit the collection of data. Recent developments in unmanned aerial systems, which provide an additional means of collecting multispectral and thermal infrared data, have the potential …


Damage Assessment Of Built-Up Areas Via Uas-Sfm Derived Point Cloud Data, Mohammad Ebrahim Mohammadi, Richard L. Wood Jan 2018

Damage Assessment Of Built-Up Areas Via Uas-Sfm Derived Point Cloud Data, Mohammad Ebrahim Mohammadi, Richard L. Wood

Department of Civil and Environmental Engineering: Faculty Publications

In the aftermath of extreme events (e.g., earthquakes, tsunami, tornados, etc.), rapid and reliable identification of the damage in a built-up area are crucial in to rescue, recovery, and reconstruction operations. While it is critical to conduct efficient emergency response management, lack of classified or tagged damaged regions due to communications and accessibility limitations can further delay recovery operations, rescue efforts, and resource management. Furthermore, critical and perishable damage scenes can also be lost during recovery and cleanup operations immediately following the event. In recent decades, advances in remote sensing technologies demonstrate a great potential to perform rapid reconnaissance and …