Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Engineering

Ultraviolet Imager Application For A Cube Satellite, Jason Grillo, Troy Hajjar, Brady Hill Dec 2018

Ultraviolet Imager Application For A Cube Satellite, Jason Grillo, Troy Hajjar, Brady Hill

Mechanical Engineering

This document serves as the final design review (FDR) report for the 2018 Cal Poly CubeSat Ultraviolet Imager senior project, sponsored by UC Berkeley Space Sciences Laboratories (SSL). SSL wants to monitor the ionosphere above Earth to gain a better understanding of its properties and particle interactions. Far Ultraviolet (FUV) imaging is a good way to obtain high quality images of the ionosphere and the Earth's auroras, and advancement in optic technologies have made cube satellites (CubeSats) an ideal vessel for a FUV imager, as they are relatively low-cost, lightweight, and can be repeatedly deployed. These CubeSat FUV imagers could …


Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman Dec 2018

Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman

Master's Theses

The purpose of this thesis is to design a machine learning algorithm platform that provides expanded knowledge of mission availability through a launch season by improving trajectory resolution and introducing launch mission forecasting. The specific scenario addressed in this paper is one in which data is provided for four deterministic translational maneuvers through a mission to a Near Rectilinear Halo Orbit (NRHO) with a 9:2 synodic frequency. Current launch availability knowledge under NASA’s Orion Orbit Performance Team is established by altering optimization variables associated to given reference launch epochs. This current method can be an abstract task and relies on …


Comparative Analysis Of Electrodynamic Toroidal Radiation Shielding Configurations, Max Rosenberg Dec 2018

Comparative Analysis Of Electrodynamic Toroidal Radiation Shielding Configurations, Max Rosenberg

Master's Theses

Beyond the protective confines of Earth's atmosphere and magnetosphere, spacecraft are subject to constant bombardment by high-energy charged particles originating from our Sun in the form of Solar Particle Events (SPEs), and from outside the solar system in the form of Galactic Cosmic Rays (GCRs). The harm these particles do can be reduced or mitigated outright through radiation shielding. Because protons and other charged particles comprise most of these radiation particles, strong magnetic fields could be generated around spacecraft to deflect incoming charged radiation particles. This thesis investigates the performance of specific configurations of toroidal superconducting solenoids to generate magnetic …


Bi-Stability In The Wakes Of Platooning Ahmed Bodies, Daniel M. Stalters Dec 2018

Bi-Stability In The Wakes Of Platooning Ahmed Bodies, Daniel M. Stalters

Master's Theses

Autonomous heavy vehicles will enable the promise of decreased energy consumption through the ability to platoon in closer formation than is currently safe or legal. It is therefore increasingly important to understand the complex and dynamic wake interactions between vehicles operating in close proximity for aerodynamic gains. In recent years, a growing body of research has documented a bi-stable, shifting wake generated behind the Ahmed reference bluff body. At the same time, studies of platooning Ahmed bodies have focused on changes to the body forces and moments at different following distances or lateral offsets, typically based around time-averaged measurements or …


Micro-Nozzle Simulation And Test For An Electrothermal Plasma Thruster, Tyler J. Croteau Dec 2018

Micro-Nozzle Simulation And Test For An Electrothermal Plasma Thruster, Tyler J. Croteau

Master's Theses

With an increased demand in Cube Satellite (CubeSat) development for low cost science and exploration missions, a push for the development of micro-propulsion technology has emerged, which seeks to increase CubeSat capabilities for novel mission concepts. One type of micro-propulsion system currently under development, known as Pocket Rocket, is an electrothermal plasma micro-thruster.

Pocket Rocket uses a capacitively coupled plasma, generated by radio-frequency, in order to provide neutral gas heating via ion-neutral collisions within a gas discharge tube. When compared to a cold-gas thruster of similar size, this gas heating mechanism allows Pocket Rocket to increase the exit thermal velocity …


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Investigating The Effect Of An Upstream Spheroid On Tandem Hydrofoils, Joel Tynan Guerra Dec 2018

Investigating The Effect Of An Upstream Spheroid On Tandem Hydrofoils, Joel Tynan Guerra

Master's Theses

This thesis documents a series of three dimensional unsteady Reynolds Averaged Navier-Stokes CFD simulations used to investigate the influence of an upstream prolate spheroid body on tandem pitching hydrofoils. The model is validated by performing separate CFD simulations on the body and pitching hydrofoils and comparing results to existing experimental data. The simulations were run for a range of Strouhal numbers (0.2-0.5) and phase differences (0-π). Results were compared to identical simulations without an upstream body to determine how the body affects thrust generation and the unsteady flow field.

The combined time-averaged thrust increases with Strouhal number, and is highest …


Nanosatellite Launch Data-Logger (Sync), Christopher Martin Gerdom Dec 2018

Nanosatellite Launch Data-Logger (Sync), Christopher Martin Gerdom

Master's Theses

CubeSat designers are increasingly looking to incorporate delicate structures and optics into their payloads. These delicate payloads, however, may not survive the required absolute-worst-case launch vibration testing needed for flight certification. To help address this problem, and to better match testing conditions to real-world launch environments, this thesis introduces Sync, a compact 1/4U CubeSat payload designed to collect data on the vibrations and thermal environments CubeSats experience inside a deployer on the way to orbit. This data can be used to better understand the launch environment for different vehicles, and help develop new, more realistic testing guidelines that could enable …


A Computational Fluid Dynamics (Cfd) Analysis Of The Aerodynamic Effects Of The Seams On A Two-Dimensional Representation Of A Soccer Ball, Allen R. Rohr Dec 2018

A Computational Fluid Dynamics (Cfd) Analysis Of The Aerodynamic Effects Of The Seams On A Two-Dimensional Representation Of A Soccer Ball, Allen R. Rohr

Master's Theses

Most major sports today use a dedicated ball or projectile with specific shape, size, and surface geometry, except for soccer. Over the history of the sport, the surface geometry and design stayed relatively unchanged, sewn together using 32 pentagonal and hexagonal panels. However, recent innovations in panel designs differ substantially from the traditional 32 panel ball. The effects these new designs have on the aerodynamic characteristics of the ball have remained largely unknown, even with the influx of experimental research completed in the past decade. Experimental studies have been broad in scope, analyzing an entire ball in wind tunnels or …


Techedsat 7 And 8-Nasa Missions For Earth Observation, Andrew Pham Sep 2018

Techedsat 7 And 8-Nasa Missions For Earth Observation, Andrew Pham

STAR Program Research Presentations

Big results can come from small satellites, and Technology Educational Satellite 8 or TES-8 is the latest small satellite in the TechEdSat series from NASA Ames Research Center. TechEdSat is a collaborative program, in which advanced university students have a chance to work directly with researchers on NASA Space Projects. Thanks to the assistance of students from several universities around the country every year, TechEdSat has helped NASA develop Nano-satellite technologies and evaluate new ideas for future spacecraft. TES-8 is the eighth satellite of the continuing TechEdSat series. On December 01, 2018 TES-8 followed a Commercial Resupply Service mission to …


The Development And Validation Of Sinatra: A Three-Dimensional Direct Simulation Monte Carlo (Dsmc) Code Written In Object-Oriented C++ And Performed On Cartesian Grids, David Matthew Galvez Aug 2018

The Development And Validation Of Sinatra: A Three-Dimensional Direct Simulation Monte Carlo (Dsmc) Code Written In Object-Oriented C++ And Performed On Cartesian Grids, David Matthew Galvez

Master's Theses

The field of Computational Fluid Dynamics (CFD) primarily involves the approximation of the Navier-Stokes equations. However, these equations are only valid when the flow is considered continuous such that molecular interactions are abundant and predictable. The Knudsen number, $Kn$, which is defined as the ratio of the flow's mean free path, $\lambda$, to some characteristic length, $L$, quantifies the continuity of any flow, and when this parameter is large enough, alternative methods must be employed to simulate gases. The Direct Simulation Monte Carlo (DSMC) method is one which simulates rarefied gas flows by directly simulating the particles that compose the …


The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham Jun 2018

The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham

Materials Engineering

Inconel 718 (IN718) is a popular wrought superalloy, and is currently being investigated for additive manufacturing (AM) applications in the aerospace industry. However, overaging and the presence of microcracks have caused a significant reduction in properties. The purpose of this study is to meet or exceed the mechanical properties of wrought IN718 by varying the composition and build direction of the AM alloy. Alternative compositions were selected with Oerlilon Metco’s Rapid Alloy Development (RAD) software, and differ in niobium content, which increases the fraction of the primary strengthening phase (γʺ). Direct metal deposition (DMD) was used to fabricate the samples, …


An Evaluation Of Ultrasonic Shot Peening And Abrasive Flow Machining As Surface Finishing Processes For Selective Laser Melted 316l, Rhys Gilmore Jun 2018

An Evaluation Of Ultrasonic Shot Peening And Abrasive Flow Machining As Surface Finishing Processes For Selective Laser Melted 316l, Rhys Gilmore

Master's Theses

Additive Manufacturing, and specifically powder bed fusion processes, have advanced rapidly in recent years. Selective Laser Melting in particular has been adopted in a variety of industries from biomedical to aerospace because of its capability to produce complex components with numerous alloys, including stainless steels, nickel superalloys, and titanium alloys. Post-processing is required to treat or solve metallurgical issues such as porosity, residual stresses, and surface roughness. Because of the geometric complexity of SLM produced parts, the reduction of surface roughness with conventional processing has proven especially challenging. In this Thesis, two processes, abrasive flow machining and ultrasonic shot peening, …


Evaluation Of Electrochemical And Laser Polishing Of Selectively Lasermelted 316l Stainless Steel, Julian R. Lohser Jun 2018

Evaluation Of Electrochemical And Laser Polishing Of Selectively Lasermelted 316l Stainless Steel, Julian R. Lohser

Master's Theses

Selective laser melting has shown incredible growth as a metallic additive manufacturing process in recent years. While it does provide many solutions and new ways to approach challenges, it does not come without issues of its own, namely, surface roughness. In the as-printed state, the surface roughness of selectively laser melted parts is unacceptable for use in engineering applications. Additionally, selective laser melting is used to produce complex geometries with hard to reach features, preventing conventional mechanical polishing from being successful. Therefore, it is necessary to evaluate non-mechanical polishing processes as treatments for surface roughness. In this study, electrochemical and …


Exploring The Concept Of A Deep Space Solar-Powered Small Spacecraft, Kian Guillaume Crowley Jun 2018

Exploring The Concept Of A Deep Space Solar-Powered Small Spacecraft, Kian Guillaume Crowley

Master's Theses

New Horizons, Voyager 1 & 2, and Pioneer 10 & 11 are the only spacecraft to ever venture past Pluto and provide information about space at those large distances. These spacecraft were very expensive and primarily designed to study planets during gravitational assist maneuvers. They were not designed to explore space past Pluto and their study of this environment is at best a secondary mission. These spacecraft rely on radioisotope thermoelectric generators (RTGs) to provide power, an expensive yet necessary approach to generating sufficient power. With Cubesats graduating to interplanetary capabilities, such as the Mars-bound MarCO spacecraft, matching the modest …


Use Of Manifolds In The Insertion Of Ballistic Cycler Trajectories, Oliver K. Morrison Jun 2018

Use Of Manifolds In The Insertion Of Ballistic Cycler Trajectories, Oliver K. Morrison

Master's Theses

Today, Mars is one of the most interesting and important destinations for humankind and copious methods have been proposed to accomplish these future missions. One of the more fascinating methods is the Earth-Mars cycler trajectory which is a trajectory that accomplishes repeat access to Earth and Mars with little to no fuel-burning maneuvers. This would allow fast travel to and from Mars, as well as grant the possibility of multiple missions using the same main vehicle.

Insertion from Earth-orbit onto the cycler trajectory has not been thoroughly ex- plored and the only existing method so far is a Hohmann-esque transfer …


Determining Feasibility Of A Propulsionless Microsatellite Formation Flight Mission, Aaron Levis Jun 2018

Determining Feasibility Of A Propulsionless Microsatellite Formation Flight Mission, Aaron Levis

Master's Theses

Benefits of developing missions with multiple formation flying spacecraft as an alternative to a traditional monolithic vehicle are becoming apparent. In some cases, these missions can lower cost and increase flexibility among other situational advantages. However, there are various limitations that are imposed by these missions that are centered on the concept of maintaining the necessary formation. One such limitation is that of the propulsion system required for each spacecraft. To mitigate the complexity and mass of the onboard propulsion, the pairing of electromagnetic actuators and differential drag to replace the functionality of a propulsive system is investigated. By using …


Utilizing Permanent On-Board Water Storage For Efficient Deep Space Radiation Shielding, Nathan Ryan Gehrke Jun 2018

Utilizing Permanent On-Board Water Storage For Efficient Deep Space Radiation Shielding, Nathan Ryan Gehrke

Master's Theses

As space technologies continue to develop rapidly, there is a common desire to launch astronauts beyond the ISS to return to the Moon and put human footsteps on Mars. One of the largest hurdles that still needs to be addressed is the protection of astronauts from the radiation environment seen in deep space. The most effective way to defend against radiation is increasing the thickness of the shield, however this is limited by strict mass requirements. In order to increase the thickness of the shield, it is beneficial to make mission critical items double as shielding material.

The human rated …


The Design And Implementation Of A Supersonic Indraft Tube Wind Tunnel For The Demonstration Of Supersonic Flows, Daniel Kenneth Johnson Jun 2018

The Design And Implementation Of A Supersonic Indraft Tube Wind Tunnel For The Demonstration Of Supersonic Flows, Daniel Kenneth Johnson

Master's Theses

Historically, the endeavor of scale testing flight vehicles at supersonic Mach numbers, especially for long durations, has required the development of closed-loop wind tunnels, which are extremely expensive both to build and operate due to the high complexity and incredible power required to drive such a system. The intermittent blowdown wind tunnel, indraft tunnel, and shock tunnel have alleviated many of these cost requirements to some degree, whilst facilitating testing at very high Mach numbers and enthalpies; however, these systems require the handling of gases at pressures and temperatures that can be prohibitive for many university settings. The Ludwieg tube …


Investigating Forward Flight Multirotor Wind Tunnel Testing In A 3-By 4-Foot Wind Tunnel, Reed Danis Jun 2018

Investigating Forward Flight Multirotor Wind Tunnel Testing In A 3-By 4-Foot Wind Tunnel, Reed Danis

Master's Theses

Investigation of complex multirotor aerodynamic phenomena via wind tunnel experimentation is becoming extremely important with the rapid progress in advanced distributed propulsion VTOL concepts. Much of this experimentation is being performed in large, highly advanced tunnels. However, the proliferation of this class of vehicles extends to small aircraft used by small businesses, universities, and hobbyists without ready access to this level of test facility. Therefore, there is a need to investigate whether multirotor vehicles can be adequately tested in smaller wind tunnel facilities. A test rig for a 2.82-pound quadcopter was developed to perform powered testing in the Cal Poly …


Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Megan S. Rund Jun 2018

Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Megan S. Rund

Master's Theses

Throughout the history of interplanetary space travel, the Newtonian dynamics of the two-body problem have been used to design orbital trajectories to traverse the solar system. That is, that a spacecraft orbits only one large celestial body at a time. These dynamics have produced impressive interplanetary trajectories utilizing numerous gravity assists, such as those of Voyager, Cassini, Rosetta and countless others. But these missions required large amounts of delta-v for their maneuvers and therefore large amounts of fuel mass. As we desire to travel farther and more extensively in space, these two-body dynamics lead to impossibly high delta-v values, and …


Modification Of A Ground Based Atomic Oxygen Simulation Apparatus To Accommodate Three Dimensional Specimens, Charles Ward Jun 2018

Modification Of A Ground Based Atomic Oxygen Simulation Apparatus To Accommodate Three Dimensional Specimens, Charles Ward

Master's Theses

The space environment presents various challenges when designing systems and selecting materials for applications beyond Earth’s atmosphere. For mission success, these challenges must be considered. One of the detrimental aspects of the space en- vironment is Atomic Oxygen, AO. Only present in harmful quantities in Lower Earth Orbit, LEO, AO causes significant damage to materials by breaking molecular bonds. California Polytechnic State University’s, Cal Poly’s, space environments laboratory features an apparatus capable of simulating this environment. Very thin or short samples were tested to observe the mass loss due to erosion of the sample material. Recent modifications to the system …


Thermal Vacuum Chamber Refurbishment And Analysis, Adrian Michael Williams Jun 2018

Thermal Vacuum Chamber Refurbishment And Analysis, Adrian Michael Williams

Master's Theses

Spacecraft are subject to different environments while on orbit around the Earth and beyond. One of the most critical of these environments that must be counteracted is the thermal environment. Each spacecraft has an operating temperature that is specified in the mission requirements. The requirement stems from internal component operating temperatures that are critical to mission success. Prior to placing the spacecraft in orbit, engineers must be sure that the spacecraft will survive or risk losing the mission entirely.

The primary way to mitigate this risk is to use a thermal vacuum chamber (TVAC). The chamber is designed to resemble …


Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano Jun 2018

Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano

Master's Theses

Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will …


Electrode Geometry Effects In An Electrothermal Plasma Microthruster, Harrison Raymond King Jun 2018

Electrode Geometry Effects In An Electrothermal Plasma Microthruster, Harrison Raymond King

Master's Theses

Nanosatellites, such as Cubesats, are a rapidly growing sector of the space industry. Their popularity stems from their low development cost, short development cycle, and the widespread availability of COTS subsystems. Budget-conscious spacecraft designers are working to expand the range of missions that can be accomplished with nanosatellites, and a key area of development fueling this expansion is the creation of micropropulsion systems. One such system, originally developed at the Australian National University (ANU), is an electrothermal plasma thruster known as Pocket Rocket (PR). This device heats neutral propellant gas by exposing it to a Capacitively Coupled Plasma (CCP), then …


Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken Jun 2018

Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken

Master's Theses

The need and demand for propulsion devices on nanosatellites has grown over the last decade due to interest in expanding nanosatellite mission abilities, such as attitude control, station-keeping, and collision avoidance. One potential micro-propulsion device suitable for nanosatellites is an electrothermal plasma thruster called Pocket Rocket. Pocket Rocket is a low-power, low-cost propulsion platform specifically designed for use in nanosatellites such as CubeSats. Due to difficulties associated with integrating propulsion devices onto spacecraft such as volume constraints and heat dissipation limitations, a characterization of the heat generation and heat transfer properties of Pocket Rocket is necessary. Several heat-transfer models of …


Sysml Output Interface And System-Level Requirement Analyzer For The Horizon Simulation Framework, Viren Kishor Patel Apr 2018

Sysml Output Interface And System-Level Requirement Analyzer For The Horizon Simulation Framework, Viren Kishor Patel

Master's Theses

Model-Based Systems Engineering in industry has been constantly increasing its presence within the aerospace industry. SysML is one such MBSE tool that shows complex system organization and relationships. The Horizon Simulation Framework is another MBSE tool, created by Cal Poly students, that gives users the ability to run “day-in-the-life” simulations of systems. Finding a way to link these two tools could allow systems engineers to reap the benefits of both.

This thesis investigates the background and design process involved with developing the code that can convert an output file generated in SysML, into a format specifically made for the Horizon …


Single Camera Photogrammetry Matlab Solver Developed For Automation Of The Oil Interferometry Process, Hunter Michael Dunn Jan 2018

Single Camera Photogrammetry Matlab Solver Developed For Automation Of The Oil Interferometry Process, Hunter Michael Dunn

Master's Theses

Over the last 20 years, Gregory G. Zilliac of the NASA AMES Research Center has been in continuous development of a fringe-imaging skin friction PC application used in oil interferometry analysis. This application, CXWIN5G, allows users to analyze propagation of oil smears across an aerodynamic surface using photogrammetry. The purpose of this thesis is to investigate the feasibility of increasing the level of automation currently found in CXWIN5G by developing a MATLAB solver capable of determining oil smear geometry with minimal user input.

There are two main automation goals of this thesis that are reflected in the core of the …