Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Transverse Anderson Localization In Optical Fibers: High-Quality Wave Transmission And Novel Lasing Applications, Behnam Abaie Dec 2018

Transverse Anderson Localization In Optical Fibers: High-Quality Wave Transmission And Novel Lasing Applications, Behnam Abaie

Optical Science and Engineering ETDs

In this dissertation, transverse Anderson localization (TAL) of light mediated by disordered optical fibers is exploited for high-quality optical wave transmission and novel random lasing applications. En route, we first establish a powerful numerical platform for detailed investigation of TAL optical fibers (TALOF). Our approach is based on a modal perspective as opposed to beam propagation method (BPM) which was primarily used in the previous studies of TAL in disordered optical fibers. The versatile numerical tools developed in our simulations result in a potent methodology for simulation of TALOFs; the result is a fast and effective algorithm which can be …


Criticality Assessments For Improving Algorithmic Robustness, Thomas B. Jones Nov 2018

Criticality Assessments For Improving Algorithmic Robustness, Thomas B. Jones

Computer Science ETDs

Though computational models typically assume all program steps execute flawlessly, that does not imply all steps are equally important if a failure should occur. In the "Constrained Reliability Allocation" problem, sufficient resources are guaranteed for operations that prompt eventual program termination on failure, but those operations that only cause output errors are given a limited budget of some vital resource, insufficient to ensure correct operation for each of them.

In this dissertation, I present a novel representation of failures based on a combination of their timing and location combined with criticality assessments---a method used to predict the behavior of systems …


Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado Nov 2018

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of …


End-To-End Deep Learning Systems For Scene Understanding, Path Planning And Navigation In Fire Fighter Teams, Manish Bhattarai Nov 2018

End-To-End Deep Learning Systems For Scene Understanding, Path Planning And Navigation In Fire Fighter Teams, Manish Bhattarai

Shared Knowledge Conference

Firefighting is a dynamic activity with many operations occurring simultaneously. Maintaining situational awareness, defined as knowledge of current conditions and activities at the scene, are critical to accurate decision making. Firefighters often carry various sensors in their personal equipment, namely thermal cameras, gas sensors, and microphones. Improved data processing techniques can mine this data more effectively and be used to improve situational awareness at all times thereby improving real-time decision making and minimizing errors in judgment induced by environmental conditions and anxiety levels. This objective of this research employs state of the art Machine Learning (ML) techniques to create an …


Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani Nov 2018

Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani

Shared Knowledge Conference

An interferometer or resonator is a device in which optical beams of specific frequencies circulate with minimal losses. These losses are completely compensated by the gain inside a laser resonator. A small perturbation introduced inside the laser can affect its frequency, which in turns becomes a metric of that perturbation. The perturbation is usually caused by an electric or magnetic field, rotation, acceleration, nonlinear index of refraction etc. Tiny changes of optical frequency are monitored by superimposing the laser field and a reference field (from the same laser) on a detector. This technique requires creating a laser in which two …


Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti Nov 2018

Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti

Shared Knowledge Conference

Ultrasonic monitoring in cementitious materials is challenging due to the high degree of attenuation. In wellbore environments, monitoring becomes more challenging due to inaccessibility. Meta materials, also known as acoustic bandgap materials, exhibit an interesting feature of forbidding the propagation of elastic/sound waves and isolate vibration in a certain frequency band. Traditionally, acoustic bandgap materials are developed with inclusions such as tin, aluminum, gold, steel in a polymer matrix. In this study, we present the development of three-dimensional cementitious sensors capable of exhibiting stopbands in the acoustic transmission spectra using carbon nanotubes. Relatively wide stopbands were engineered using Floquet-Bloch periodic …


High-Performance Testbed For Vision-Aided Autonomous Navigation For Quadrotor Uavs In Cluttered Environments, Shakeeb Ahmad Jul 2018

High-Performance Testbed For Vision-Aided Autonomous Navigation For Quadrotor Uavs In Cluttered Environments, Shakeeb Ahmad

Electrical and Computer Engineering ETDs

This thesis presents the development of an aerial robotic testbed based on Robot Operating System (ROS). The purpose of this high-performance testbed is to develop a system capable of performing robust navigation tasks using vision tools such as a stereo camera. While ensuring the computation of robot odometery, the system is also capable of sensing the environment using the same stereo camera. Hence, all the navigation tasks are performed using a stereo camera and an inertial measurement unit (IMU) as the main sensor suite. ROS is used as a framework for software integration due to its capabilities to provide efficient …


Novel Compact Narrow-Linewidth Mid-Infrared Lasers For Sensing Applications, Behsan Behzadi Jul 2018

Novel Compact Narrow-Linewidth Mid-Infrared Lasers For Sensing Applications, Behsan Behzadi

Optical Science and Engineering ETDs

The mid-infrared (2-14 μm) spectral region contains the strong absorption lines of many important molecular species, which make this region crucial for several well-know applications such as spectroscopy, chemical and biochemical sensing, security, and industrial monitoring. To fully exploit this region through absorption spectroscopic techniques, compact and low-cost narrow-linewidth (NLW) mid-infrared (MIR) laser sources are of primary importance.

This thesis is focused on three novel compact NLW MIR lasers: demonstration and characterization of a new glass-based spherical microlaser, investigation of the performance of a novel fiber laser, and the design of a monolithic laser on a silicon chip. Starting with …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …


Improvement Of The Material's Mechanical Characteristics Using Intelligent Real Time Control Interfaces In Hfc Hardening Process, Florentin Smarandache, Luige Vladareanu, Mihaiela Iliescu, Victor Vladareanu, Alexandru Gal, Octavian Melinte, Adrian Margean Mar 2018

Improvement Of The Material's Mechanical Characteristics Using Intelligent Real Time Control Interfaces In Hfc Hardening Process, Florentin Smarandache, Luige Vladareanu, Mihaiela Iliescu, Victor Vladareanu, Alexandru Gal, Octavian Melinte, Adrian Margean

Branch Mathematics and Statistics Faculty and Staff Publications

The paper presents Intelligent Control (IC) Interfaces for real time control of mechatronic systems applied to Hardening Process Control (HPC) in order to improvement of the material's mechanical characteristics. Implementation of IC laws in the intelligent real time control interfaces depends on the particular circumstances of the models characteristics used and the exact definition of optimization problem. The results led to the development of the IC interfaces in real time through Particle Swarm Optimization (PSO) and neural networks (NN) using offline the regression methods.


Fundamentals Of Neutrosophic Logic And Sets And Their Role In Artificial Intelligence (Fundamentos De La Lógica Y Los Conjuntos Neutrosóficos Y Su Papel En La Inteligencia Artificial ), Florentin Smarandache, Maykel Leyva-Vazquez Jan 2018

Fundamentals Of Neutrosophic Logic And Sets And Their Role In Artificial Intelligence (Fundamentos De La Lógica Y Los Conjuntos Neutrosóficos Y Su Papel En La Inteligencia Artificial ), Florentin Smarandache, Maykel Leyva-Vazquez

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophy is a new branch of philosophy which studies the origin, nature and scope of neutralities. This has formed the basis for a series of mathematical theories that generalize the classical and fuzzy theories such as the neutrosophic sets and the neutrosophic logic. In the paper, the fundamental concepts related to neutrosophy and its antecedents are presented. Additionally, fundamental concepts of artificial intelligence will be defined and how neutrosophy has come to strengthen this discipline.


Some Aggregation Operators For Bipolar-Valued Hesitant Fuzzy Information, Florentin Smarandache, Tahir Mahmood, Kifayat Ullah, Qaisar Khan Jan 2018

Some Aggregation Operators For Bipolar-Valued Hesitant Fuzzy Information, Florentin Smarandache, Tahir Mahmood, Kifayat Ullah, Qaisar Khan

Branch Mathematics and Statistics Faculty and Staff Publications

In this article we define some aggregation operators for bipolar-valued hesitant fuzzy sets. These operations include bipolar-valued hesitant fuzzy ordered weighted averaging (BPVHFOWA) operator, bipolar-valued hesitant fuzzy ordered weighted geometric (BPVHFOWG) operator and their generalized forms. We also define hybrid aggregation operators and their generalized forms and solved a decision-making problem on these operation.


Application For Position And Load Reference Generation Of A Simulated Mechatronic Chain, Florentin Smarandache, V. Vladareanu, S.B. Cononovici, M. Migdalovici, H. Wang, Y. Feng Jan 2018

Application For Position And Load Reference Generation Of A Simulated Mechatronic Chain, Florentin Smarandache, V. Vladareanu, S.B. Cononovici, M. Migdalovici, H. Wang, Y. Feng

Branch Mathematics and Statistics Faculty and Staff Publications

The paper presents the position and load reference generation for a motor stand simulating a mechatronic chain, in this case a three degree of freedom robot leg. The task is accomplished using three PLC controlled motors in position as the robot joint actuators coupled with three controlled in torque, simulating the load at each simulation time-step. The paper briefly discusses the mathematical model and presents the visual interface used in the simulation, which is then to be further integrated into a virtual environment robot control application.


Neutrosophic Computing With Sympy (Computación Neutrosófica Mediante Sympy ), Maykel Leyva-Vazquez, Florentin Smarandache Jan 2018

Neutrosophic Computing With Sympy (Computación Neutrosófica Mediante Sympy ), Maykel Leyva-Vazquez, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In this article the concept of neutrosophic number is presented. Jupyter through Google Colaboratory is introduced for calculations. The Sympy library is used to perform the process of neutrosophic computation. Systems of linear neutrosóficas equations are solved by means of the symbolic computation in python. A case study was developed for the determination of vehicular traffic with indeterminacy. As future works are the development of new applications in different areas of engineering and science.


Neutrosophic Computing And Machine Learning, Vol. 1, Florentin Smarandache, Maikel Leyva-Vázquez Jan 2018

Neutrosophic Computing And Machine Learning, Vol. 1, Florentin Smarandache, Maikel Leyva-Vázquez

Branch Mathematics and Statistics Faculty and Staff Publications

La neutrosofía es una nueva rama de la filosofía la cual estudia el origen, naturaleza y alcance de las neutralidades, así como sus interacciones con diferentes espectros ideacionales: (A) es una idea, proposición, teoría, evento, concepto o entidad; anti (A) es el opuesto de (A); y (neut-A) significa ni (A) ni anti (A), es decir, la neutralidad entre los dos extremos. Etimológicamente neutron-sofía [Frances neutre < Latin neuter, neutral, y griego sophia, conocimiento] significa conocimiento de los pensamiento neutrales y comenzó en 1995. Su teoría fundamental afirma que toda idea < A > tiende a ser neutralizada, disminuida, balaceada por las ideas (no solo como Hegel planteó)- como un estado de equilibrio.


Special Issue: Neutrosophic Information Theory And Applications, Florentin Smarandache, Jun Ye Jan 2018

Special Issue: Neutrosophic Information Theory And Applications, Florentin Smarandache, Jun Ye

Branch Mathematics and Statistics Faculty and Staff Publications

Neutrosophiclogic,symboliclogic,set,probability,statistics,etc.,are,respectively,generalizations of fuzzy and intuitionistic fuzzy logic and set, classical and imprecise probability, classical statistics, and so on. Neutrosophic logic, symbol logic, and set are gaining significant attention in solving many real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. A number of new neutrosophic theories have been proposed and have been applied in computational intelligence, multiple-attribute decision making, image processing, medical diagnosis, fault diagnosis, optimization design, etc. This Special Issue gathers original research papers that report on the state of the art, as well as on recent advancements in neutrosophic information theory in soft computing, artificial intelligence, …


Modelo De Recomendación Basado En Conocimiento Y Números Svn, Maykel Leyva-Vazquez, Florentin Smarandache Jan 2018

Modelo De Recomendación Basado En Conocimiento Y Números Svn, Maykel Leyva-Vazquez, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

Recommendation models are useful in the decision-making process that allow the user a set of options that are expected to meet their expectations. Recommendation models are useful in the decision-making process that offer the user a set of options that are expected to meet their SVN expectations to express linguistic terms.