Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Engineering

Utilizing The Hvsr Second Peak For Surface Wave Inversions In The Mississippi Embayment, Ashraf Kamal Himel Dec 2018

Utilizing The Hvsr Second Peak For Surface Wave Inversions In The Mississippi Embayment, Ashraf Kamal Himel

Graduate Theses and Dissertations

Ambient noise data from 24 sites within the Mississippi Embayment were analyzed to estimate the fundamental frequency using the horizontal to vertical spectral ratio (HVSR) method. The fundamental frequency ranged from 0.17 to 3.43 Hz for the tested sites. At seventeen of the sites, a second higher frequency HVSR peak, which ranged from 0.617 Hz to 2.154 Hz, was observed in addition to the fundamental HVSR peak. The second peak frequency in the HVSR curve has been attributed by previous researchers as either an odd harmonic of the fundamental peak or a shallow impedance contrast from the Memphis sand layer …


A Generative Statistical Approach For Data Classification In A Biologically Inspired Design Tool, Marvin Manuel Arroyo Rujano Dec 2018

A Generative Statistical Approach For Data Classification In A Biologically Inspired Design Tool, Marvin Manuel Arroyo Rujano

Graduate Theses and Dissertations

The objective of the research this thesis describes is to find a way to classify text-based descriptions of biological adaption to support Biologically Inspired design. Biologically inspired design is a fairly new field with ongoing research. There are different tools to assist designers and biologists in bio-inspired design. Some of the most common are BioTRIZ and AskNature. In recent years, more tools have been proposed to aid and make research in the field easier, for example, the Biologically Inspired Adaptive System Design (BIASD) tool. This tool was designed with the goal of helping designers in early design stages generate more …


Fatigue Performance And Shear Demand Distributions Of Clustered Shear Connectors In Composite Bridge Girders, Brian David Hillhouse Dec 2018

Fatigue Performance And Shear Demand Distributions Of Clustered Shear Connectors In Composite Bridge Girders, Brian David Hillhouse

Graduate Theses and Dissertations

The current American Association of State Highway and Transportation Officials (AASHTO) Bridge Specifications assumes uniform shear flow demands at the steel-concrete interface of composite bridge girders. As stud pitch increases to beyond 24 in or as studs become clustered to account for pre-cast concrete decks, this assumed shear demand distribution may be unrepresentative. Understanding shear transfer and resulting demands on headed studs in composite beams are important for ensuring adequate composite design. This study investigates stud demands in composite bridge girders using large-scale fatigue testing and direct pressure measurements for stud force calculations. In this study, two large-scale composite beam …


The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley Dec 2018

The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley

Graduate Theses and Dissertations

In the realm of additive manufacturing there is an increasing trend among makers to create designs that allow for end-users to alter them prior to printing an artifact. Online design repositories have tools that facilitate the creation of such artifacts. There are currently no rules for how to create a good customizable design or a way to measure the degree of customization within a design. This work defines three types of customizations found in additive manufacturing and presents three metrics to measure the degree of customization within designs based on the three types of customization. The goal of this work …


Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz Dec 2018

Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz

Graduate Theses and Dissertations

Biofiltration without pre-ozonation has the capability to remove natural organic matter (NOM) fractions that serve as precursors of disinfection byproducts (DBPs), which include the four regulated trihalomethanes (THMs) and dichloroacetonitrile (DCAN). Rapid small-scale column tests (RSSCTs) and Pilot Plant filters operated at empty-bed contact times (EBCTs) of 4, 8, and 16 minutes were used to evaluate the performance of nutrient-amended (free ammonia and phosphorus) biofiltration for THM and DCAN precursor removal, as measured using formation potential (FP) tests. NOM surrogates – which include dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA254) and fluorescence-PARAFAC components – were measured weekly throughout the …


Budget-Constrained Regression Model Selection Using Mixed Integer Nonlinear Programming, Jingying Zhang Dec 2018

Budget-Constrained Regression Model Selection Using Mixed Integer Nonlinear Programming, Jingying Zhang

Graduate Theses and Dissertations

Regression analysis fits predictive models to data on a response variable and corresponding values for a set of explanatory variables. Often data on the explanatory variables come at a cost from commercial databases, so the available budget may limit which ones are used in the final model.

In this dissertation, two budget-constrained regression models are proposed for continuous and categorical variables respectively using Mixed Integer Nonlinear Programming (MINLP) to choose the explanatory variables to be included in solutions. First, we propose a budget-constrained linear regression model for continuous response variables. Properties such as solvability and global optimality of the proposed …


Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia Dec 2018

Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia

Graduate Theses and Dissertations

The high exciton binding energy in one dimensional (1D) nano-structures makes them prominent for optoelectronic device applications, making it relevant to theoretically investigate their electronic and optical properties. Many-body effects that are not captured by the conventional density functional theory (DFT) have a huge impact in such selenium and tellurium single helical atomic chains. This work goes one step beyond DFT to include the electron self-energy effects within the GW approximation to obtain a corrected quasi-particle electronic structure. Further, the Bethe-Salpeter equation was solved to obtain the absorption spectrum and to capture excitonic effects. Results were obtained using the Hyberstein-Louie …


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Graduate Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste …


Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai Dec 2018

Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai

Graduate Theses and Dissertations

Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing between …


Exfoliation, Synthesis, And Characterization Of Nanoscale Te, Takayuki Hironaka Dec 2018

Exfoliation, Synthesis, And Characterization Of Nanoscale Te, Takayuki Hironaka

Graduate Theses and Dissertations

Since the experimental discovery of graphene, two dimensional materials have enjoyed more attention and emphasis in academic research than nanowires, but the latter are an important area of study for creating 1D materials, or single atom chains, the next generation materials for advancing electronic devices. Atomically thin layers can be generated from 2D materials with weak bonds in one direction, and by applying this concept to one dimensional weakly bonded materials, we hypothesize that single atom chains with atomic-scale diameters may be produced. Tellurium (Te) and selenium (Se) have lattices consisting of spiral chains oriented along the c-axis, and each …


Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie Dec 2018

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie

Graduate Theses and Dissertations

Electrochemical sensors based on the nanostructure of the semiconductor materials are of tremendous interest to be utilized for glucose monitoring. The sensors, based on the nanostructure of the semiconductor materials, are the third generations of the glucose sensors that are fast, sensitive, and cost-effect for glucose monitoring.

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically at different glucose concentrations. …


Geophysical Assessment Of Subsurface Soil Conditions Using Capacitively Coupled Resistivity, Folaseye Coker Aug 2018

Geophysical Assessment Of Subsurface Soil Conditions Using Capacitively Coupled Resistivity, Folaseye Coker

Graduate Theses and Dissertations

The purpose of this research is to explore the applicability of Capacitively-Coupled Resistivity (CCR) as an improvement on traditional drilling and sampling methods for subsurface soil investigations. The CCR method could be used to identify critical locations for drilling and sampling such as expansive clay layers and anomalies (sinkholes, unknown landfills, etc.) rather than uniformly sampling across a site. CCR surveys were performed at Alpena, Arkansas along a highway expansion project changing US 62 from a two lane to four lane highway, and at Alton, Illinois along the Mel Price Levee, a 5.2 mile levee along a portion of the …


Proposed Astm Standard For The Stokoe-Type Resonant Column Torsional Shear Device, Anh Tuan Tran Aug 2018

Proposed Astm Standard For The Stokoe-Type Resonant Column Torsional Shear Device, Anh Tuan Tran

Graduate Theses and Dissertations

Resonant Column Torsional Shear (RCTS) testing has become one of the most commonly used methods for determining laboratory soil stiffness and soil damping. The RCTS test has been accepted and is commonly utilized during the permitting of new nuclear facilities. However, there is still no available public standard for performing RCTS tests using the Stokoe-type device. Therefore, an ASTM standard for calibration and performance of RCTS tests using the Stokoe-type RCTS device is presented herein. Data collected using the Stokoe-type RCTS devices at the University of Arkansas (UofA) and at the Norwegian Geotechnical Institute (NGI) also aided in the development …


Sustainability Of Utilizing Renewable And Nuclear Energy In Saudi Arabia Using Different Types Of Life Cycle Assessment, Kamel Almutairi Aug 2018

Sustainability Of Utilizing Renewable And Nuclear Energy In Saudi Arabia Using Different Types Of Life Cycle Assessment, Kamel Almutairi

Graduate Theses and Dissertations

Evaluating the global environmental impacts of the current and future energy policies in Saudi Arabia using Life cycle assessment (LCA) method was the main objective of this dissertation. First, the attributional life cycle assessment (ALCA) framework was used to evaluate the Saudi’s air conditioning systems, as they are responsible for about 70% of the total Saudi residential electricity consumption. The ALCA’s results showed that the AC use phase produces the largest share of the environmental impact and the magnitude of the environmental impacts is influenced by the type of primary fuel used for electricity generation.

Emerging non-fossil sources of electricity …


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Graduate Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable …


What Can I Do As A Student To Make A Positive Impact On The Environment?, Tammy Guthrie, Greg Herzig, Kathy Prophet, Cassie Kautzer Jul 2018

What Can I Do As A Student To Make A Positive Impact On The Environment?, Tammy Guthrie, Greg Herzig, Kathy Prophet, Cassie Kautzer

Middle School Lesson Plans

Students discover ways they can make a positive impact on the environment.


Liquefaction-Induced Dragload And/Or Downdrag On Deep Foundations Within The New Madrid Seismic Zone, Ishimwe Elvis May 2018

Liquefaction-Induced Dragload And/Or Downdrag On Deep Foundations Within The New Madrid Seismic Zone, Ishimwe Elvis

Graduate Theses and Dissertations

Deep foundation elements are typically used to transfer structural loads for multi-story buildings and large-span bridges to a competent soil layer when 1) the soil close to the ground surface has no sufficient bearing capacity, and when 2) liquefiable soils are encountered. The majority of the bridges constructed within seismic zones rely upon the stability of earthen embankments and deep foundation that are installed above or within liquefiable soil deposits. Despite large factor of safety values or different load and resistance factors being used to adequately design deep foundations within seismic areas, soil liquefaction may cause extensive damage to the …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang May 2018

The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang

Graduate Theses and Dissertations

One of the objectives of this thesis work was to investigate the cathode performance of lithium cobalt oxide (LiCoO2) incorporated with graphene powder in lithium ion batteries (LIBs). Graphene powder was incorporated into cathode materials to enhance the performance of LIBs. The other objective was to impede the construction of a solid electrolyte interphase (SEI) sheet using graphene sheet coating on its cathode.

The results of this work show that adding graphene powder improved the performance of LiCoO¬2 as a cathode material. With the incorporation of different weight percentages of graphene powder, the LiBs showed distinct changes in their charging …


Low Latency Intrusion Detection In Smart Grids, Israel Zairi Akingeneye May 2018

Low Latency Intrusion Detection In Smart Grids, Israel Zairi Akingeneye

Graduate Theses and Dissertations

The transformation of traditional power grids into smart grids has seen more new technologies such as communication networks and smart meters (sensors) being integrated into the physical infrastructure of the power grids. However, these technologies pose new vulnerabilities to the cybersecurity of power grids as malicious attacks can be launched by adversaries to attack the smart meters and modify the measurement data collected by these meters. If not timely detected and removed, these attacks may lead to inaccurate system state estimation, which is critical to the system operators for control decisions such as economic dispatch and other related functions.

This …


Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu May 2018

Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu

Graduate Theses and Dissertations

Semiconductor quantum dots (QDs) confine carriers in three dimensions, resulting in atomic-like energy levels as well as size-dependent electrical and optical properties. Self-assembled III-V QD is one of the most studied semiconductor QDs thanks to their well-established fabrication techniques and versatile optical properties. This dissertation presents the photoluminescence (PL) study of the InAs/GaAs QDs with both above bandgap continuous-wave excitation (one-photon excitation) and below-bandgap pulse excitation (two-photon excitation). Samples of ensemble QDs, single QD (SQD), and QDs in a micro-cavity, all grown by molecular beam epitaxy, are used in this study. Morphology of these samples was examined using atomic force …


Investigating Initial Interactions Between Silver Nanoparticles And Wastewater, Casey Gibson May 2018

Investigating Initial Interactions Between Silver Nanoparticles And Wastewater, Casey Gibson

Biological and Agricultural Engineering Undergraduate Honors Theses

The use of nanoparticles (NPs) has increased exponentially in the last 15-20 years, especially in the consumer market. NPs are currently found in over 1800 commercial products, including cosmetics, clothing, packaging, and toys. As a result, NPs can enter the environment via wastewater (WW) streams, leading to new challenges in WW treatment. This study focuses on the initial fate of silver nanoparticles (AgNPs) in WW. The AgNP interaction including aggregation and dissolution in both synthetic and real WW were studied. Real WW was collected from the primary-clarifier, secondary-clarifier, and effluent WW streams at two local WW treatment plants (Westside and …


Performance Assessment Of Solid State Anaerobic Digestion Of Poultry Litter, Mason Puckett May 2018

Performance Assessment Of Solid State Anaerobic Digestion Of Poultry Litter, Mason Puckett

Biological and Agricultural Engineering Undergraduate Honors Theses

The disposal of poultry litter can exert an economic and environmental burden to the agriculture community. As a result, it is desirable to reduce the amount of waste and recover resources from the waste. This study focuses on the construction and preliminary testing of a laboratory scale (20 L) solid state anaerobic digester (AD) fed with dry poultry litter. Glucose was added in addition to the poultry litter to achieve the appropriate C:N ratio to support the growth of anaerobic microorganisms. The AD was first fed every 4 days at 4 g VS/L/feeding for 24 days, rested (no feeding) for …


Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert May 2018

Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert

Mechanical Engineering Undergraduate Honors Theses

Graphene functionalized with platinum (Pt) and palladium (Pd) has proven to be highly effective as a hydrogen sensor. Deposition methods such as Atomic layer deposition (ALD) can be further enhanced by pretreating the graphene with a non-covalent surfactant prior to nanoparticle deposition. In this study, graphene-based sensing devices will be fabricated by ALD deposition. The graphene will be non-covalently functionalized using sodium dodecyl sulfate (SDS) anionic surfactant prior to ALD deposition. The aim of this study is to test the deposition pattern achieved by varying the amount of time that graphene is treated with the SDS surfactant. Initially, ALD deposition …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Lithium And The Foreseeable Future, Paolo Vargas May 2018

Lithium And The Foreseeable Future, Paolo Vargas

Mechanical Engineering Undergraduate Honors Theses

This paper aims to clarify the uncertainties regarding worldwide lithium resource availability in the years to come. Previous studies made on the subject are presented with some ambiguity and this work intends to fill the gaps. The information and data presented throughout this script with respect to global lithium resources and reserves are mostly based on data released by the United States Geological Survey (USGS). Lithium resource availability in the future is a point of paramount significance primarily for the automotive, portable electronics, and the power generation industry. Since, a change of supply would ultimately affect the price of lithium, …


Dynamic 3d Network Data Visualization, Brok Stafford May 2018

Dynamic 3d Network Data Visualization, Brok Stafford

Computer Science and Computer Engineering Undergraduate Honors Theses

Monitoring network traffic has always been an arduous and tedious task because of the complexity and sheer volume of network data that is being consistently generated. In addition, network growth and new technologies are rapidly increasing these levels of complexity and volume. An effective technique in understanding and managing a large dataset, such as network traffic, is data visualization. There are several tools that attempt to turn network traffic into visual stimuli. Many of these do so in 2D space and those that are 3D lack the ability to display network patterns effectively. Existing 3D network visualization tools lack user …


Journal Acknowledgments And Editorial Board, Academy Editors Jan 2018

Journal Acknowledgments And Editorial Board, Academy Editors

Journal of the Arkansas Academy of Science

No abstract provided.


Onsager Reciprocal Relations: Microscopic (Onsager) Or Macroscopic (Sliepcevich), R. E. "Buddy" Babcock Jan 2018

Onsager Reciprocal Relations: Microscopic (Onsager) Or Macroscopic (Sliepcevich), R. E. "Buddy" Babcock

Chemical Engineering Faculty Publications and Presentations

This paper is a combination of the discussion of two nineteenth century theoretical giantsLars Onsager and C. M. Sliepcevich, their works in general, and specifically the famousreciprocal relations of Onsager with respect to irreversible thermodynamics. Emphasis isplaced on their penetrating depth and breadth of analysis so inherently necessary in theirproblem-solving endeavors. The landscape of their work will be laid out for the readerby a comparison of Onsager’s microscopic statistical mechanics derivation of the famousreciprocal relationships and a macroscopic thermodynamic derivation published by C. M.Sliepsevich that led to considerable discussion in the literature in the 1960’s. Somelabelled this discussion a controversy; …


Characterization Of Bacteriorhodopsin And Halorhodopsin Reconstituted In Lipid Bilayer Membranes, Joel Domkam Kamwa Jan 2018

Characterization Of Bacteriorhodopsin And Halorhodopsin Reconstituted In Lipid Bilayer Membranes, Joel Domkam Kamwa

Graduate Theses and Dissertations

Motivated to produce electricity with photon activated ion pumps, the main purpose of this work was to characterize the photosynthetic membrane proteins bacteriorhodopsin (proton pump) and halorhodopsin (chloride pump). The proteins were re-suspended in lipid bilayers. For this work, an experimental set-up was built which included: chambers for lipid bilayer formation and characterization, lasers for ion pump activation, and an AxoPatch electrophysiology system for small photocurrent measurement. Lipid bilayer membranes were formed using mostly folding method: folding two monolayers together. The membranes were characterized by their resistance, capacitance, and generated photocurrent. Photocurrent was generated upon illumination of lipid-protein membranes with …