Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Thienoisatin Oligomers As N-Type Molecular Semiconductors, Natalie M. Kadlubowski, Xuyi Luo, Jianguo Mei Aug 2018

Thienoisatin Oligomers As N-Type Molecular Semiconductors, Natalie M. Kadlubowski, Xuyi Luo, Jianguo Mei

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic field effect transistors (OFETs) offer many advantages compared to traditional inorganic transistors, such as flexibility and solution processability. In this study we design and synthesize two thienoisatin-based organic semiconducting small molecules, then investigate their electronic properties in n-type OFETs. To introduce n-type charge transport, electron-withdrawing dicarbonitrile moieties were installed on thienoisoindigo and bis-thienoisatin molecules, which led to a quinoidal conjugation on thienoisoindigo, while maintaining an aromatic conjugation on the bis-thienoisatin. Following the syntheses, the molecules were characterized to determine highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels via cyclic voltammetry, as well as any potential …


Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy Aug 2018

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Dehydrogenation of alkanes is the first step in transforming light hydrocarbons into liquid fuels and chemicals. This process has traditionally used platinum alloys as catalysts. Alloys are used industrially because they have a greater selectivity than monometallic platinum. Alloying platinum with an inactive promoter modifies the crystalline structure of the surface (geometric effect), and the 5d electrons in platinum responsible for chemistry (electronic effect); both have been suggested to be primarily responsible for dehydrogenation selectivity in platinum alloys. Alloy catalysts have been synthesized using early 3d transition metal promoters with the same Pt3M crystal structure. X-Ray Absorption Spectroscopy …


Efvs Effects On Pilot Performance, Michael Campbell, Nsikak Udo-Imeh, Steven J. Landry Aug 2018

Efvs Effects On Pilot Performance, Michael Campbell, Nsikak Udo-Imeh, Steven J. Landry

The Summer Undergraduate Research Fellowship (SURF) Symposium

Flight tests have been conducted at Purdue University using a computer-based flying simulator in an attempt to determine and measure the effects of Enhanced Flight Vision Systems (EFVS) on the performance of pilots during landing. Knowledge of these effects could help guide future design and implementation of EFVS in modern commercial aircraft, and further increase pilots’ ability to control the aircraft in low-visibility conditions. The problem that has faced researchers in the past has revolved around the difficulty in interpreting the data which is generated by these tests. The difficulty in making a generalized conclusion based on the large amount …


Short-Term Organic Carbon Release And Chlorine Disinfectant Decay For Cross-Linked Polyethylene (Pex) Plumbing Pipes, Miriam Tariq, Christian J. Ley, Maryam Salehi, Andrew J. Whelton Aug 2018

Short-Term Organic Carbon Release And Chlorine Disinfectant Decay For Cross-Linked Polyethylene (Pex) Plumbing Pipes, Miriam Tariq, Christian J. Ley, Maryam Salehi, Andrew J. Whelton

The Summer Undergraduate Research Fellowship (SURF) Symposium

The use of cross-linked polyethylene (PEX) plumbing pipes has grown in popularity for residential applications. However, PEX pipes can leach organic materials into water that can enable biofilm growth, cause off-tastes and -odors, and may react with disinfectants to form disinfection by-products (DBP). Varied manufacturing processes that are applied to create PEX pipes add to the complexity of understanding organic materials released. In this study, organic carbon release from three PEX pipe brands was monitored for up to five days using a series of stagnation periods. Seven stagnation periods of 1, 2, 4, 8, 24, 72, and 120 hours were …


Remote Sensing Of Soil Moisture Using S-Band Signals Of Opportunity: Model Development And Experimental Validation, Marvin Jesse, Benjamin Nold, James L. Garrison Aug 2018

Remote Sensing Of Soil Moisture Using S-Band Signals Of Opportunity: Model Development And Experimental Validation, Marvin Jesse, Benjamin Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Root zone soil moisture (RZSM) is a vital aspect in meteorology, hydrology, and agriculture. There are currently some methods in passive and active remote sensing at L-band, but these methods are limited to a sensing depth of approximately 10 cm. Observing RZSM (water in the top meter of soil) will require lower frequencies, thus presenting significant difficulties for a spaceborne instrument, because of the required antenna size, the presence of radio-frequency interference (RFI), and competition for spectrum allocations (in the case of active radar). Bistatic radar using Signal of Opportunity (SoOp) (e.g. digital satellite transmitters) provides an opportunity for remote …


Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison Aug 2018

Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Measurement of soil moisture, especially the root zone soil moisture, is important in agriculture, meteorology, and hydrology. Root zone soil moisture is concerned with the first meter down the soil. Active and passive remote sensing methods used today utilizing L-band(1-2GHz) are physically limited to a sensing depth of about 5 cm or less. To remotely sense the soil moisture in the deeper parts of the soil, the frequency should be lowered. Lower frequencies cannot be used in active spaceborne instruments because of their need for larger antennas, radio frequency interference (RFI), and frequency spectrum allocations. Ground-based passive remote sensing using …


Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner Aug 2018

Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advancements in microelectromechanical systems (MEMS) and microplasmas, particularly with respect to applications in combustion and biotechnology, motivate studies into microscale gas breakdown to enable safe system design and implementation. Breakdown at microscale deviates from that predicted by Paschen’s law due to field emission—the stripping of electrons from the cathode in the presence of strong surface field—and follows the Fowler-Nordheim (FN) law. As injected current increases at this length scale, electrons accumulate in the gap and FN electron emission becomes space charge limited, leading to the Child-Langmuir (CL) law at vacuum and the Mott-Gurney (MG) law at high pressure. While theoretical …


Investigating Dataset Distinctiveness, Andrew Ulmer, Kent W. Gauen, Yung-Hsiang Lu, Zohar R. Kapach, Daniel P. Merrick Aug 2018

Investigating Dataset Distinctiveness, Andrew Ulmer, Kent W. Gauen, Yung-Hsiang Lu, Zohar R. Kapach, Daniel P. Merrick

The Summer Undergraduate Research Fellowship (SURF) Symposium

Just as a human might struggle to interpret another human’s handwriting, a computer vision program might fail when asked to perform one task in two different domains. To be more specific, visualize a self-driving car as a human driver who had only ever driven on clear, sunny days, during daylight hours. This driver – the self-driving car – would inevitably face a significant challenge when asked to drive when it is violently raining or foggy during the night, putting the safety of its passengers in danger. An extensive understanding of the data we use to teach computer vision models – …


Predict The Failure Of Hydraulic Pumps By Different Machine Learning Algorithms, Yifei Zhou, Monika Ivantysynova, Nathan Keller Aug 2018

Predict The Failure Of Hydraulic Pumps By Different Machine Learning Algorithms, Yifei Zhou, Monika Ivantysynova, Nathan Keller

The Summer Undergraduate Research Fellowship (SURF) Symposium

Pump failure is a general concerned problem in the hydraulic field. Once happening, it will cause a huge property loss and even the life loss. The common methods to prevent the occurrence of pump failure is by preventative maintenance and breakdown maintenance, however, both of them have significant drawbacks. This research focuses on the axial piston pump and provides a new solution by the prognostic of pump failure using the classification of machine learning. Different kinds of sensors (temperature, acceleration and etc.) were installed into a good condition pump and three different kinds of damaged pumps to measure 10 of …


Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung Aug 2018

Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung

The Summer Undergraduate Research Fellowship (SURF) Symposium

A new generation of silicon pixel detectors is required to cope with the unprecedented luminosities at the high-luminosity phase of the Large Hadron Collider (HL-LHC) in 2025. The HL-LHC provides a high radiation, high interaction rate environment for the innermost detector region of the CMS detector. This can lead to an uncontrolled increase in temperature of the detector that can destroy the silicon pixels. Moreover, too high operating temperature can add noise to the data obtained from the detector and can slow the read out cheap down. Therefore, the Phase II upgrade to the Compact Muon Solenoid (CMS) experiment requires …


Deep Neural Network Architectures For Modulation Classification Using Principal Component Analysis, Sharan Ramjee, Shengtai Ju, Diyu Yang, Aly El Gamal Aug 2018

Deep Neural Network Architectures For Modulation Classification Using Principal Component Analysis, Sharan Ramjee, Shengtai Ju, Diyu Yang, Aly El Gamal

The Summer Undergraduate Research Fellowship (SURF) Symposium

In this work, we investigate the application of Principal Component Analysis to the task of wireless signal modulation recognition using deep neural network architectures. Sampling signals at the Nyquist rate, which is often very high, requires a large amount of energy and space to collect and store the samples. Moreover, the time taken to train neural networks for the task of modulation classification is large due to the large number of samples. These problems can be drastically reduced using Principal Component Analysis, which is a technique that allows us to reduce the dimensionality or number of features of the samples …


Sort Vs. Hash Join On Knights Landing Architecture, Victor L. Pan, Felix Lin Aug 2018

Sort Vs. Hash Join On Knights Landing Architecture, Victor L. Pan, Felix Lin

The Summer Undergraduate Research Fellowship (SURF) Symposium

With the increasing amount of information stored, there is a need for efficient database algorithms. One of the most important database operations is “join”. This involves combining columns from two tables and grouping common values in the same row in order to minimize redundant data. The two main algorithms used are hash join and sort merge join. Hash join builds a hash table to allow for faster searching. Sort merge join first sorts the two tables to make it more efficient when comparing values. There has been a lot of debate over which approach is superior. At first, hash join …


Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell Aug 2018

Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ceramic and semiconductor research is limited in its ability to create holistic representations of data in concise, easily-accessible file formats or visual data representations. These materials are used in everyday electronics, and optimizing their electrical and physical properties is important for developing more advanced computational technologies. There is a desire to understand how changing the composition of the ceramic alters the shape and structure of the grown crystals. However, few accessible tools exist to generate a dataset with the proper organization to understand correlations between grain orientation and crystallographic orientation. This paper outlines an approach to analyzing the crystal structure …


Use Of Excel Spreadsheet Calculators In Handling Data Generated From Uv- Spectrometer, Mercy Okezue, Kari Clase, Steve Byrn Mar 2018

Use Of Excel Spreadsheet Calculators In Handling Data Generated From Uv- Spectrometer, Mercy Okezue, Kari Clase, Steve Byrn

BIRS Symposium

To ease the complexities of handling data generated from different analytical procedures, validated excel spreadsheet containing relevant formulas are developed to ensure the process of data handling will consistently produce the expected results. This paper introduces the use of Excel spreadsheets in handling data generated from using a UV-Spectrometer in determination of analyte concentration in various dosage forms


Instituting Process Control Mechanisms In A Quality Control Analytical Chemistry Laboratory, Mercy Okezue, Kari Lynn Clase, Stephen Byrn Mar 2018

Instituting Process Control Mechanisms In A Quality Control Analytical Chemistry Laboratory, Mercy Okezue, Kari Lynn Clase, Stephen Byrn

BIRS Symposium

Statistical Process Control by means of using control charts was a means of monitoring performance of analytical equipment. Quality control checks on test items using these equipment generated data used for plotting X-bar charts. The charts generated had warning and control limits which helped monitor system performance