Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Physical Sciences and Mathematics

Chinese Chemical Society | Xiamen University

Electrolyte

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Pd/C Catalysts For Co2 Electroreduction To Co:Pd Loading Effect, Dun-Feng Gao, Cheng-Cheng Yan, Guo-Xiong Wang, Xin-He Bao Dec 2018

Pd/C Catalysts For Co2 Electroreduction To Co:Pd Loading Effect, Dun-Feng Gao, Cheng-Cheng Yan, Guo-Xiong Wang, Xin-He Bao

Journal of Electrochemistry

Nanostructured heterogeneous catalysts have been widely used in the electrochemical carbon dioxide (CO2) reduction reaction (CO2RR), which can simultaneously achieve the electrocatalytic conversion of CO2 to fuels and the storage of renewable energy sources. Carbon supported palladium nanoparticles (Pd/C) catalysts have been previously reported to show excellent CO2RR performance. However, the crucial role of the metal loading in supported electrocatalysts has been rarely reported. In this work, we study the Pd loading effect on the structure of Pd/C catalysts as well as their activity and selectivity of CO2RR to CO. The …


Research Progresses In Improvement For Low Temperature Performance Of Lithium-Ion Batteries, Yue-Ru Gu, Wei-Min Zhao, Chang-Hu Su, Chuan-Jun Luo, Zhong-Ru Zhang, Xu-Jin Xue, Yong Yang Oct 2018

Research Progresses In Improvement For Low Temperature Performance Of Lithium-Ion Batteries, Yue-Ru Gu, Wei-Min Zhao, Chang-Hu Su, Chuan-Jun Luo, Zhong-Ru Zhang, Xu-Jin Xue, Yong Yang

Journal of Electrochemistry

Lithium-ion batteries (LIBs) have become a new research hotspot due to their high energy density and long service life. However, the temperature characteristics, especially the poor performance at low temperatures, have seriously limited their wider applications. In this report, the research progresses in the low temperature performance of LIBs are reviewed. The main existing limitations of LIBs at low temperatures were systematically analyzed, and followed by discussion on the recent improvements in low temperature performances by developing novel cathode, electrolyte, and anode materials. The developments for improving the low temperature performance of LIBs are prospected. The three most important factors …