Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Design And Preliminary Evaluation Of A Supercritical Carbon Dioxide Brayton Cycle For Solar Dish Concentrator Clean Energy Production, Danielle Nobles-Lookingbill Dec 2018

Design And Preliminary Evaluation Of A Supercritical Carbon Dioxide Brayton Cycle For Solar Dish Concentrator Clean Energy Production, Danielle Nobles-Lookingbill

UNLV Theses, Dissertations, Professional Papers, and Capstones

As we move toward energy independence and more ambitious clean energy goals, solar energy research must push the efficiency limits of traditional energy generation systems. Increases in efficiency can be achieved by increasing the hot temperature of the power cycle. Recent research demonstrates the potential for increased efficiency and a vastly smaller component size when supercritical carbon dioxide Brayton power cycles are used. Concentrated solar and nuclear heat sources are capable of achieving the high working fluid temperatures needed for significant efficiency gains. This NSF EPSCoR funded, experimental research system is designed to exploit the uniquely immense solar irradiance of …


Static And Dynamic Quantitative Microbial Risk Assessment Of Potable Reuse Paradigms, Erfaneh Amoueyan May 2018

Static And Dynamic Quantitative Microbial Risk Assessment Of Potable Reuse Paradigms, Erfaneh Amoueyan

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, potable reuse applications have become more common due to population growth and increased water demand, especially in communities with limited or variable water resources. However, there are concerns about potential exposure to pathogens and chemical compounds in treated wastewater. Therefore, advanced wastewater treatment processes are of paramount importance in any potable reuse system. The overall aim of this study was to develop and implement static and dynamic QMRAs to compare public health risk in various potable reuse scenarios. Cryptosporidium, norovirus, adenovirus, and Salmonella were chosen as the target pathogens. The research evaluated the performance of full advanced …