Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Micro-Nozzle Simulation And Test For An Electrothermal Plasma Thruster, Tyler J. Croteau Dec 2018

Micro-Nozzle Simulation And Test For An Electrothermal Plasma Thruster, Tyler J. Croteau

Master's Theses

With an increased demand in Cube Satellite (CubeSat) development for low cost science and exploration missions, a push for the development of micro-propulsion technology has emerged, which seeks to increase CubeSat capabilities for novel mission concepts. One type of micro-propulsion system currently under development, known as Pocket Rocket, is an electrothermal plasma micro-thruster.

Pocket Rocket uses a capacitively coupled plasma, generated by radio-frequency, in order to provide neutral gas heating via ion-neutral collisions within a gas discharge tube. When compared to a cold-gas thruster of similar size, this gas heating mechanism allows Pocket Rocket to increase the exit thermal velocity …


Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin Aug 2018

Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Stationary Hall thrusters are electric, moderate-specific impulse propulsion systems developed in Russia. These devices manipulate electric and magnetic fields to expel ionized gas (plasma) components, resulting in thrust. The success of Hall-effect engines in USSR satellite-transfer missions quickly sparked western interest in the design. Extensive government and academic study commenced shortly after the dissolution of the Soviet Union, when the technology was made available to the United States. The common SPT-100 model was the primary subject of such studies. Unfortunately, limited literature exists for rare and uncommon Hall thruster models. The T-100-3 stationary plasma thruster suffers from this gap; few …


Decomposition And Ionization Of Ionic Liquids, Forrest Grady Kidd Iii Aug 2018

Decomposition And Ionization Of Ionic Liquids, Forrest Grady Kidd Iii

Dissertations

The United States Air Force is interested in developing a situationally responsive space environment. In order to achieve this, dual-mode-propulsion will be utilized. A new class of propellants is being developed for this application based on energetic ionic liquids. Two ionic liquids of current interest are Hydroxylammonium Nitrate (HAN) and Hydroxyethylhydrazinium Nitrate (HEHN) due to their beneficial performance characteristics. The decomposition and ionization chemistry of these two species is investigated in this work. Using GAUSSIAN09 software, reactions with important radicals are explored through quantum chemistry. The energetics of reactions as well as the identity of key product complexes are given. …


Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken Jun 2018

Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken

Master's Theses

The need and demand for propulsion devices on nanosatellites has grown over the last decade due to interest in expanding nanosatellite mission abilities, such as attitude control, station-keeping, and collision avoidance. One potential micro-propulsion device suitable for nanosatellites is an electrothermal plasma thruster called Pocket Rocket. Pocket Rocket is a low-power, low-cost propulsion platform specifically designed for use in nanosatellites such as CubeSats. Due to difficulties associated with integrating propulsion devices onto spacecraft such as volume constraints and heat dissipation limitations, a characterization of the heat generation and heat transfer properties of Pocket Rocket is necessary. Several heat-transfer models of …


Pseudo Linear Hall Effect Thruster Characterization Through Potential, Magnetic, And Optical Measurements, Braeden A. Sheets Mar 2018

Pseudo Linear Hall Effect Thruster Characterization Through Potential, Magnetic, And Optical Measurements, Braeden A. Sheets

Theses and Dissertations

Electric propulsion systems are a more mass efficient method for providing a change in velocity, ΔV, to on-orbit spacecraft, than their chemical counterparts. In comparison, electric systems generally have a much higher specific impulse, Isp, than chemical systems. One option within the realm of electric propulsion is Hall Effect Thrusters, which have moderately high specific impulse values. From their advent in the 1960s, Hall Effect Thrusters have been used for orbit station keeping, attitude control, and orbit transfer. Although the discharge cavity is conventionally circular, pseudo-linear or racetrack shaped cavities have been developed. Even though Hall thrusters have decades of …


Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban Jan 2018

Non-Intrusive Optical Measurement Of Electron Temperature In Near Field Plume Of Hall Thruster, Peter J. Urban

ETD Archive

Currently there is a large interest in the use of more efficient means of propulsion in long term missions due to the costs and difficulties associated with placing and maintaining the needed fuel for conventional chemical systems in orbit. Mass reduction of upper stages will return large returns due to the great reduction in required lower stage fuel. Due to these factors, alternatives are undergoing active research, though this paper is concerned with the area of electrical propulsion. Electric propulsion is broadly defined as propulsion where the energization of the exhaust occurs via application of electromagnetic fields as opposed to …