Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Robot

Discipline
Institution
Publication
Publication Type
File Type

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Ros-Enabled Framework For A Miniature Hexapod As A Mobile Robot Research Platform, Joseph Michael Kloeppel Dec 2017

Ros-Enabled Framework For A Miniature Hexapod As A Mobile Robot Research Platform, Joseph Michael Kloeppel

Electrical and Computer Engineering ETDs

The purpose of this thesis is to investigate and develop a framework for connected six-legged robots which can be used as a Robotic Operating System (ROS) based research platform. The research presented aims to purvey the necessary engineering and scientific steps needed to evolve a consumer-grade connected toy into a fully functioning and highly capable robotic system. Such a platform can be used to simulate and implement novel biologically inspired swarm research. Crawling robots have the advantage of being able to scale terrains which wheeled mobile robots may not and possess many interesting characteristics. The miniROaCH, miniature ROS-enabled and Crawling …


Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett Dec 2017

Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett

Mechanical Engineering

This paper describes the design process from ideation to test validation for a singular robotic joint to be configured into a myriad of system level of robots.


Emerging Role Of Robot-Assisted Occupational Therapy For Children With Down Syndrome, Venera Krasniqi, Nevena Ackovska, Katerina Zdravkova Oct 2017

Emerging Role Of Robot-Assisted Occupational Therapy For Children With Down Syndrome, Venera Krasniqi, Nevena Ackovska, Katerina Zdravkova

UBT International Conference

Robotic technology is becoming increasingly popular as a platform for both education and entertainment. It also provides us with new conceptual directions which might have incredibly positive impact on children with physical growth delays and intellectual disabilities. In this research project, the educational robot Roamer Too from Valiant Technologies has been used to explore the development of social skills of children with Down syndrome. In conjunction with an interactive collaborative environment, this device represents a unique opportunity for these children to fully engage in learning, play, communication, build relationships and have fun. The results of this study indicate that educational …


Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson Oct 2017

Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson

Purdue Journal of Service-Learning and International Engagement

The courses of Tech120, CGT110, and ENGT 180/181 and Red Gold at Purdue collaborated to design a robot that would plant and water a garden for a local community charter school. The students centered the project on the users’ needs for fresh food, nutrition education, and early exposure to STEM for children. The school, Anderson Preparatory Academy (APA), is comprised of many children who come from low-income families and are in the free or reduced lunch program. Inspired from “Farm Bot,” a similar system that allows for almost hands-free gardening, the “Boiler Bot” is designed to be scalable so children …


Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song Aug 2017

Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song

Doctoral Dissertations

This study uses the Computers Are Social Actors (CASA) and domestication theories as the underlying framework of an acceptance model of retail service robots (RSRs). The model illustrates the relationships among facilitators, attitudes toward Human-Robot Interaction (HRI), anxiety toward robots, anticipated service quality, and the acceptance of RSRs. Specifically, the researcher investigates the extent to which the facilitators of usefulness, social capability, the appearance of RSRs, and the attitudes toward HRI affect acceptance and increase the anticipation of service quality. The researcher also tests the inhibiting role of pre-existing anxiety toward robots on the relationship between these facilitators and attitudes …


Flexible-Continuum Robot For Bladder Tissue Diagnostics, Samson Abimbola Adejokun Aug 2017

Flexible-Continuum Robot For Bladder Tissue Diagnostics, Samson Abimbola Adejokun

Mechanical and Aerospace Engineering Theses

The aim of this thesis is to investigate and develop a robotic system capable of a transurethral palpation of any targeted area on the bladder interior wall tissue to determine the biomechanical properties of the tissue considering the urinary tract geometric constraints and to demonstrate the motion kinematics of such robot to achieve a desired robot pose normal to any localized region throughout the bladder workspace. Current technologies have, to varied degree of success, provide approximate, global diagnostics information to bladder tissue elasticity. However, no direct access qualitative methods to measure the bladder tissue properties are known. For this reason, …


The Design, Manufacture, And Testing Of A Novel Adhesion System For A Climbing Vehicle, Michael William Schier Jun 2017

The Design, Manufacture, And Testing Of A Novel Adhesion System For A Climbing Vehicle, Michael William Schier

Master's Theses

We present the design and fabrication of a prototype wall-climbing vehicle employing a unique combined locomotion and adhesion system in which the adhesive vacuum is transmitted through moving, perforated treads. Implementing the adhesion/drive system involved a broad range of design challenges, including: developing reliable sealing of sliding and static interfaces, understanding the frictional interactions between the drive treads and various vehicle components and surfaces on which they ride, as well as designing for lightness, manufacturability, and adjustability. The clean sheet design presented in this thesis was taken from concept to functioning prototype in less than 6 months, requiring a considered …


Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs May 2017

Models For Pedestrian Trajectory Prediction And Navigation In Dynamic Environments, Jeremy N. Kerfs

Master's Theses

Robots are no longer constrained to cages in factories and are increasingly taking on roles alongside humans. Before robots can accomplish their tasks in these dynamic environments, they must be able to navigate while avoiding collisions with pedestrians or other robots. Humans are able to move through crowds by anticipating the movements of other pedestrians and how their actions will influence others; developing a method for predicting pedestrian trajectories is a critical component of a robust robot navigation system. A current state-of-the-art approach for predicting pedestrian trajectories is Social-LSTM, which is a recurrent neural network that incorporates information about neighboring …


Modelling And Control Of A Novel Walker Robot For Post-Stroke Gait Rehabilitation, Emre Sariyildiz, Hsiao-Ju Cheng, Gokhan M. Yagli, Haoyong Yu Jan 2017

Modelling And Control Of A Novel Walker Robot For Post-Stroke Gait Rehabilitation, Emre Sariyildiz, Hsiao-Ju Cheng, Gokhan M. Yagli, Haoyong Yu

Faculty of Engineering and Information Sciences - Papers: Part B

In this paper, a novel walker robot is proposed for post-stroke gait rehabilitation. It consists of an omni-directional mobile platform which provides high mobility in horizontal motion, a linear motor that moves in vertical direction to support the body weight of a patient and a 6-axis force/torque sensor to measure interaction force/torque between the robot and patient. The proposed novel walker robot improves the mobility of pelvis so it can provide more natural gait patterns in rehabilitation. This paper analytically derives the kinematic and dynamic models of the novel walker robot. Simulation results are given to validate the proposed kinematic …


Underwater Robot, Joseph E. Beck, Matthew Crislip, Cody Bobek, Peyton Lucas Jan 2017

Underwater Robot, Joseph E. Beck, Matthew Crislip, Cody Bobek, Peyton Lucas

Williams Honors College, Honors Research Projects

Remotely Operated Vehicles (ROVs) are remote controlled drones operated by a non-local user. The ROV we plan to build is connected by a tethering wire to a floating buoy that contains an antenna which will send signals between the base station and the ROV. The ROV is equipped with a video camera, ballast system, propulsion system, lights, and a depth sensor. The ROV will transmit a live video feed to the user, while receiving input signals to control its movement from the base station.