Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Design And Evaluation Of A Sub-1-Volt Read Flash Memory In A Standard 130 Nanometer Cmos Process, David Andrew Basford Dec 2017

Design And Evaluation Of A Sub-1-Volt Read Flash Memory In A Standard 130 Nanometer Cmos Process, David Andrew Basford

Masters Theses

Nonvolatile memory design is a discipline that employs digital and analog circuit design techniques and requires knowledge of semiconductor physics and quantum mechanics. Methods for programming and erasing memory are discussed here, and simulation models are provided for Impact Hot Electron Injection (IHEI), Fowler-Nordheim (FN) tunneling, and direct tunneling. Extensive testing of analog memory cells was used to derive a set of equations that describe the oating-gate characteristics. Measurements of charge retention also revealed several leakage mechanisms, and methods for mitigating leakage are presented.

Fabrication of ash memory in a standard CMOS process presents significant design challenges. The absence of …


An Analog Cmos Particle Filter, Trevor Watson Dec 2017

An Analog Cmos Particle Filter, Trevor Watson

Masters Theses

Particle filters are used in a variety of image processing and machine learning applications. Their main use in these applications is to gather information about a system of objects, by using partial or noisy observations collected from sensors. These observations are used to associate points of interest in the observations with objects and maintain this association through a series of observations.

In this paper I will investigate the performance of a particle filter implemented in 130nm analog CMOS hardware. The design goal of the particle filter is low-microwatt power consumption. Using analog hardware, rather than digital ASICs or CPUs I …


Design And Implementation Of A Low‐Power Wireless Respiration Monitoring Sensor, Ifana Mahbub Aug 2017

Design And Implementation Of A Low‐Power Wireless Respiration Monitoring Sensor, Ifana Mahbub

Doctoral Dissertations

Wireless devices for monitoring of respiration activities can play a major role in advancing modern home-based health care applications. Existing methods for respiration monitoring require special algorithms and high precision filters to eliminate noise and other motion artifacts. These necessitate additional power consuming circuitry for further signal conditioning. This dissertation is particularly focused on a novel approach of respiration monitoring based on a PVDF-based pyroelectric transducer. Low-power, low-noise, and fully integrated charge amplifiers are designed to serve as the front-end amplifier of the sensor to efficiently convert the charge generated by the transducer into a proportional voltage signal. To transmit …


Design Of An Active Harmonic Rejection N-Path Filter For Highly Tunable Rf Channel Selection, Craig J. Fischer Jun 2017

Design Of An Active Harmonic Rejection N-Path Filter For Highly Tunable Rf Channel Selection, Craig J. Fischer

Master's Theses

As the number of wireless devices in the world increases, so does the demand for flexible radio receiver architectures capable of operating over a wide range of frequencies and communication protocols. The resonance-based channel-select filters used in traditional radio architectures have a fixed frequency response, making them poorly suited for such a receiver. The N-path filter is based on 1960s technology that has received renewed interest in recent years for its application as a linear high Q filter at radio frequencies. N-path filters use passive mixers to apply a frequency transformation to a baseband low-pass filter in order to achieve …


A Sub-Threshold Low-Power Integrated Bandpass Filter For Highly-Integrated Spectrum Analyzers, Benjamin David Roehrs May 2017

A Sub-Threshold Low-Power Integrated Bandpass Filter For Highly-Integrated Spectrum Analyzers, Benjamin David Roehrs

Masters Theses

Low-power analog filter banks provide frequency analysis with minimal space requirements, making them viable solutions for integrated remote audio- and vibration-sensing applications. In order to achieve a balance between the length of deployable service and system performance, a critical requirement of such remote sensor networks is low-power consumption, due to the constraints imposed by on-board battery cells.

In this work, the design and implementation of a sub-threshold complementary metal-oxide semiconductor (CMOS) integrated low-power tunable analog filter channel for Oak Ridge National Laboratory is presented. Project specifications required a tunable, high-order, monolithic bandpass filter channel with small chip area and low …


Cmos Programmable Time Control Circuit Design For Phased Array Uwb Ground Penetrating Radar Antenna Beamforming, Nicholas James Reilly Jan 2017

Cmos Programmable Time Control Circuit Design For Phased Array Uwb Ground Penetrating Radar Antenna Beamforming, Nicholas James Reilly

Graduate College Dissertations and Theses

Phased array radar systems employ multiple antennas to create a radar beam that can be steered electronically. By manipulating the relative phase values of feeding signals among different antennas, the effective radiation pattern of the array can be synthesized to enhance the main lobe in a desired direction while suppressing the undesired side lobes in other directions. Hence the radar scanning angles can be electronically controlled without employing the bulky mechanical gimbal structure, which can significantly reduce radar system size, weight and power consumption. In recent years, phased array technologies have received great attentions and are explored in developing many …


Electronically Tunable Mos-Only Current-Mode High-Order Band-Pass Filters, Pipat Prommee, Aphinat Tiamsuphat, Muhammad Taher Abuelmaatti Jan 2017

Electronically Tunable Mos-Only Current-Mode High-Order Band-Pass Filters, Pipat Prommee, Aphinat Tiamsuphat, Muhammad Taher Abuelmaatti

Turkish Journal of Electrical Engineering and Computer Sciences

This paper presents new CMOS current-mode ladder Chebyshev and elliptic band-pass filters (BPFs). The signal flow graph and the network transformation methods are used to synthesize the proposed BPFs by using Chebyshev and elliptic RLC low-pass prototypes. CMOS-based lossy and lossless integrators with grounded capacitors are used to synthesize the proposed BPFs. The proposed filters can be electronically tuned between 10 kHz and 100 MHz by adjusting the bias current from 0.02 $\mu $A to 200 $\mu $A. Both filters use a 1.5 V DC power supply, which leads to low dynamic power consumption. Both filters enjoy total harmonic distortion …


Last Two Surface Range Detector For Direct Detection Multisurface Flash Lidar In 90nm Cmos Technology, Douglas Preston Jan 2017

Last Two Surface Range Detector For Direct Detection Multisurface Flash Lidar In 90nm Cmos Technology, Douglas Preston

Browse all Theses and Dissertations

This thesis explores a novel detection architecture for use in a Direct-Detect Flash LIDAR system. The proposed architecture implements detection of the last two surfaces within single pixels of a target scene. The novel, focal plane integrated detector design allows for detection of objects behind sparse and/or partially reflective covering such as forest canopy. The proposed detector would be duplicated and manufactured on-chip behind each avalanche photodiode within a focal plane array. Analog outputs are used to minimize interference from digital components on the analog input signal. The proposed architecture is a low-footprint solution which requires low computational post-processing. Additionally, …