Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini May 2017

Improved Sample Utilization In Thermal Ionization Mass Spectrometry Isotope Ratio Measurements: Refined Development Of Porous Ion Emitters For Nuclear Forensic Applications, Matthew Louis Baruzzini

Doctoral Dissertations

The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical efforts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization efficiency, often less than tenths of a percent; the majority of …


Effects Of Grain Size And Dopants On The Irradiation Response Of Actinide Oxides, Jeffrey Morgan Walters May 2017

Effects Of Grain Size And Dopants On The Irradiation Response Of Actinide Oxides, Jeffrey Morgan Walters

Masters Theses

High energy irradiation can induce physical and chemical changes in nuclear materials, impacting their properties and performance in reactor systems. Of particular interest is the radiation response of actinide oxides, such as UO2 [Uranium Dioxide] and ThO2 [Thorium Dioxide], as well as analogue materials such as CeO2 [Cerium Dioxide]. During the course of reactor operations, these nuclear materials are exposed to high energy ionizing radiation in the form of nuclear fission fragments. This study simulates the extreme conditions found in a nuclear reactor by utilizing accelerated heavy ions with mass and kinetic energy comparable to fission fragments …