Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Electrochemical Hydrogen Separation Via The Solid Acid Electrolyte Cesium Dihydrogen Phosphate, David Leon Wilson Dec 2017

Electrochemical Hydrogen Separation Via The Solid Acid Electrolyte Cesium Dihydrogen Phosphate, David Leon Wilson

Doctoral Dissertations

Abundant, inexpensive, high purity molecular hydrogen as a medium for energy distribution is potentially enabling for adoption of alternative electricity generation schemes. Steam reforming of natural gas remains the dominant method of producing large amounts of hydrogen. However, this process also creates by-products, most notably, carbon monoxide and carbon dioxide. Separation to ultra-high purity hydrogen from these syngas reformate streams by traditional methods, such as pressure swing absorption, has its disadvantages including long cycle times, contamination and a large equipment footprint. Alternative methods of hydrogen separation, such as electrochemical pumping, are a viable alternative to this separation dilemma due to …


An Exploration Of Basic Processes For Aqueous Electrochemical Production Of Hydrogen From Biomass Derived Molecules, Brian Fane Dec 2017

An Exploration Of Basic Processes For Aqueous Electrochemical Production Of Hydrogen From Biomass Derived Molecules, Brian Fane

Doctoral Dissertations

Polymer electrolyte membrane fuel cells(PEMFCs) are energy conversion devices with significant potential. The factors preventing them from becoming widespread concern production and distribution of hydrogen. Developing an efficient hydrogen infrastructure with an approachable rollout plan is an essential step towards the future of fuel cells. Water electrolysis is limited by the thermodynamics of the process, which leads to high electrical consumption and significant materials challenges. Alternative methods for cleanly generating hydrogen while using a lower cell voltage are required. PEM based electrolyzers can operate with a "depolarized anode", whereby they become significantly less power hungry.

This thesis explores two techniques …


Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo Dec 2017

Multiscale Modeling Approach To Understand Active Sites In Non-Conventional Catalyst Layers For Fuel Cell Applications, Diana Constanza Orozco Gallo

Doctoral Dissertations

Fuel cells development required stable, active and more abundant catalytic materials. Oxygen reduction reaction (ORR) is the key process to enhance better activity and reduce the fabrication costs. Pt-based has proven to be the best catalyst for ORR and greater efforts has been made in terms of reducing the Pt content in the electrodes, reduce electrode thickness and enhance better catalytic activities. To overcome many of the challenges present, the catalyst layer studies are the great importance in the fuel cell community. Understanding catalyst layer with new catalytic materials, and configurations requires the development of methodological approach to relate structure, …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


A Study Of Lignin And Lignin Models In Chemical And Electrochemical Systems, Luke Thomas Servedio May 2017

A Study Of Lignin And Lignin Models In Chemical And Electrochemical Systems, Luke Thomas Servedio

Doctoral Dissertations

The use of biomass as a viable, renewable feedstock for the production of energy and as a surrogate for the petrochemical industry has generated a tremendous amount of research over the last 40 years. With lignin comprising 25- 35% by weight of the dry mass of much of that material, much time and energy has been devoted to investigating a viable, scalable value-added proposition for the use of lignin and lignin pre-cursor materials. The bulk of lignin produced today comes as a by-product of the de-pulping process in the production of paper – most of which is used as a …


Economic Analysis Of Rare Earth Element Recovery From Clay, Garrett W. Smith May 2017

Economic Analysis Of Rare Earth Element Recovery From Clay, Garrett W. Smith

Chancellor’s Honors Program Projects

No abstract provided.


Morphological And Photoelectrochemical Characterization Of Membrane Reconstituted Photosystem I (Psi), Seyedeh Hanieh Niroomand May 2017

Morphological And Photoelectrochemical Characterization Of Membrane Reconstituted Photosystem I (Psi), Seyedeh Hanieh Niroomand

Doctoral Dissertations

The robust structural and photoactive electrochemical properties of Photosystem I (PSI), a transmembrane photosynthetic protein complex, make it an ideal candidate for incorporation into solid state bioelectronic or hybrid photovoltaic devices. However, the first step towards the successful fabrication of such devices requires systematic assembly of oriented and functional PSI onto desired bio-abio interfaces via suitable protein scaffoldings. Hence, this dissertation focuses on utilizing the cyanobacterial PSI for integration into organic/inorganic interfaces that mediate photo-electrochemical energy conversions for electricity and/or solar fuel production. To this end, in this study the effect of systematic incorporation of PSI complexes into synthetic membrane-bound …


Catalytic Hydrodeoxygenation And Dehydration Of Bioderived Oxygenates To Renewable Hydrocarbon Building Block Molecules: Enabling Renewable Carbon Fiber, Andrew Walter Lepore May 2017

Catalytic Hydrodeoxygenation And Dehydration Of Bioderived Oxygenates To Renewable Hydrocarbon Building Block Molecules: Enabling Renewable Carbon Fiber, Andrew Walter Lepore

Doctoral Dissertations

It is our goal to develop inexpensive catalytic pathways that can effectively remove oxygen from bio-derived carboxylic acids and alcohols under mild reaction conditions to produce propene which can be converted to renewable carbon fibers. Carboxylic acid hydrodeoxygenation and alcohol dehydration are necessary for successfully producing propene from bio-mass derived precursors and are also broadly relevant to bio-oil upgrading. This body of research adds to the understanding of both known and novel catalyst materials and develops and optimizes pathways for valorizing oxygenates. Dehydration and hydrodeoxygenation catalysts were examined under both batch and continuous flow operation. Product selectivity and reactant conversion …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle May 2017

A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle

Masters Theses

Organic waste streams, like domestic wastewater and municipal solid waste, have the potential to be used as feedstocks for biotechnology processes to produce high value products and energy. This thesis investigated the technological, economical, and environmental potential for integrated anaerobic digestion (AD) and bioelectrochemical system (BES) platforms as they were theoretically and physically evaluated for energy recovery from domestic wastewater. The first chapter of this thesis compared the theoretical energy efficiencies of converting waste directly into electricity, using AD and BES alone and in various combinations. This chapter reviewed the experimentally demonstrated energy efficiencies reported in the literature with comparisons …


All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu May 2017

All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu

Doctoral Dissertations

Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processability, low production cost and distinct performance. Compared to the widely-used styrenic TPEs, acrylate based TPEs have potential advantages including exceptional chemical, heat, oxygen and UV resistance, optical transparence, and oil resistance. However, their high entanglement molecular weight lead to “disappointing” mechanical performance as compared to styrenic TPEs. The work described in this dissertation is aimed at employing various approaches to develop the all acrylic based thermoplastic elastomers with improved mechanical performance.

The first part of this work focuses on the introduction of acrylic polymers with high glass …


Economic Analysis Of Rare Earth Element Recovery From Clay, Joel J. Weber, Jordan Christopher, Garrett W. Smith, Josiah P. Brandt May 2017

Economic Analysis Of Rare Earth Element Recovery From Clay, Joel J. Weber, Jordan Christopher, Garrett W. Smith, Josiah P. Brandt

Chancellor’s Honors Program Projects

No abstract provided.


An Economic Analysis Of The Extraction Of Rare Earth Elements From Clay Waste Stream, Mary Mcbride, Marti Bell, Melanie Lindsey May 2017

An Economic Analysis Of The Extraction Of Rare Earth Elements From Clay Waste Stream, Mary Mcbride, Marti Bell, Melanie Lindsey

Chancellor’s Honors Program Projects

No abstract provided.


Economic Analysis Of Rare Earth Elements Extraction From Clay Waste, Seth Archambault May 2017

Economic Analysis Of Rare Earth Elements Extraction From Clay Waste, Seth Archambault

Chancellor’s Honors Program Projects

No abstract provided.