Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Computational Materials Characterization, Discovery, And Design With High Performance Computing, Qunfei Zhou, Xiaotao Liu, Tyler Maxwell, Thomas John Balk, Matthew J. Beck Oct 2017

Computational Materials Characterization, Discovery, And Design With High Performance Computing, Qunfei Zhou, Xiaotao Liu, Tyler Maxwell, Thomas John Balk, Matthew J. Beck

Commonwealth Computational Summit

No abstract provided.


Investigation Of Photo-Responsive Titania Surfaces, Evan Hyden, Matthew J. Beck Oct 2017

Investigation Of Photo-Responsive Titania Surfaces, Evan Hyden, Matthew J. Beck

Commonwealth Computational Summit

Titania (TiO2) is an oxide commonly used for photocatalysis. This proclivity to form free radicals when exposed to light has also prompted interest in applying porous TiO2 as a reactive/responsive membrane. Surfaces of both main polymorphs of TiO2 (especially rutile {110} and anatase {101}) have been shown to be stable and photo-active.

Polyacrylic acid (PAA) is a molecule of interest as changes in pH can cause the molecule to contract or expand, due to changes in the charge distribution relating to the carboxyl group. Due to TiO2’s ability to generate photocarriers, we hypothesize that …


Comparison Of Pm-Hip To Cast Alloy 625 For Nuclear Applications, Alexander L. Bullens, Keyou Mao, Janelle P. Wharry, Esteban Bautista Aug 2017

Comparison Of Pm-Hip To Cast Alloy 625 For Nuclear Applications, Alexander L. Bullens, Keyou Mao, Janelle P. Wharry, Esteban Bautista

The Summer Undergraduate Research Fellowship (SURF) Symposium

PM-HIP, or Powder Metallurgy and Hot Isostatic Pressing, metals have been a low cost alternative to forged and cast structural metals within various industries. The nuclear industry has recently developed interest in PM-HIP alloys, but further research needs to be done to quantify their mechanical properties and characterize the microstructure. Specifically, we must understand the mechanical and microstructural evolution of PM-HIP materials after long-term operation at the elevated temperatures that PM-HIP components will experience in service. We focus on Ni-base alloy Inconel 625, and compare the PM-HIP version to the cast version. Our methodology consists of annealing samples to various …


Microstructure Evolution During Compaction Of Powder Blends, Ayush Giri, Marcial Gonzalez, Yasasvi Bommire Aug 2017

Microstructure Evolution During Compaction Of Powder Blends, Ayush Giri, Marcial Gonzalez, Yasasvi Bommire

The Summer Undergraduate Research Fellowship (SURF) Symposium

Powder compaction is a manufacturing technology used to transform powder particles into a solid material with unique anisotropic microstructure and low porosity. It is widely used by pharmaceutical companies to manufacture tablets with desired properties. These properties are the result of the microstructure obtained during the compaction process. Therefore, it is imperative to understand the mechanics underneath the constituent granular particles that eventually contribute to properties of the manufactured tablets. Computational simulation tools have been developed in the past to study powder compaction for pharmaceutical tablets. However, most of the already existing tools limit their scope to study individual particles …


Irradiation-Induced Nanocluster Evolution, Didier Ishimwe, Matthew J. Swenson, Janelle P. Wharry Aug 2017

Irradiation-Induced Nanocluster Evolution, Didier Ishimwe, Matthew J. Swenson, Janelle P. Wharry

The Summer Undergraduate Research Fellowship (SURF) Symposium

Oxide dispersion strengthened steel (ODS) and commercial ferritic-martensitic (F-M) alloys are widely accepted candidate structural materials for designing advanced nuclear reactors. Nanoclusters embedded in the steel matrix are key microstructural features of both alloy types. Irradiation from nuclear fusion and fission affects the morphology of these nanoparticles, altering the performance of the alloys and potentially decreasing their usable lifetime. Thus, it is important to understand the effect of irradiation on these nanoparticles in order to predict long-term nuclear reactor performance. It was found that the evolution of nanoclusters in each material is different depending on the experimental irradiation parameters. The …


Understanding Powder Compaction With Single Particle Measurements, Wentao Chen, Ankit Agarwal, Marcial Gonzalez Aug 2017

Understanding Powder Compaction With Single Particle Measurements, Wentao Chen, Ankit Agarwal, Marcial Gonzalez

The Summer Undergraduate Research Fellowship (SURF) Symposium

Powder compaction is the process of transforming granular media into a solid body with a high relative density (low porosity) and a unique anisotropic microstructure. It is critical to understand the physical mechanisms of the compaction process in order to identify powder properties and optimal process parameters for achieving desired properties of the final product. Tools that can simulate particle rearrangement and deformation during the compaction process are usually developed to guide such fundamental understanding. This study aims at understanding powder compaction using particle mechanics approach. Specifically, it employs the nonlocal contact formulation to predict the contact behavior of a …


Modelling Catalytic Structures With Python And Ase, Tommie L. Day, Peilin Liao, Pilsun Yoo Aug 2017

Modelling Catalytic Structures With Python And Ase, Tommie L. Day, Peilin Liao, Pilsun Yoo

The Summer Undergraduate Research Fellowship (SURF) Symposium

Voltaic cells hold great potential as a source of clean electricity generation. These fuel sources are more efficient than combustion engines, and they do not produce environmentally harmful by-products. The electrochemical reaction which occurs within the cell is typically catalyzed by platinum, which increases the cost. The search for a better performing, less expensive catalyst is hindered by the lack of a complete, predictive theory of catalysis. Using Quantum Espresso and the Atomic Simulation Environment library for Python, we created a tool for nanoHUB.org which can visually and computationally model catalytic surfaces. This tool can simulate nanoparticles and metallic surfaces …


Improving Methods Of Doping On Black Phosphorus, Yuqin Duan, Adam Charnas, Jingkai Qin, Peide Ye Aug 2017

Improving Methods Of Doping On Black Phosphorus, Yuqin Duan, Adam Charnas, Jingkai Qin, Peide Ye

The Summer Undergraduate Research Fellowship (SURF) Symposium

Black phosphorus (BP) is a 2D semiconducting material with high carrier mobility. It is usually p-type due to oxidation states near its valence band. Although achieved through other growth methods, n-type doping has not yet been accomplished through the modern chemical vapor transport (CVT) growth method. To address this issue, small amounts of tellurium were added to Red Phosphorus to act as a dopant during the CVT growth process in addition to tin(Sn) and tin(IV) iodide, which facilitate growth. The chemicals are heated up to 600°C and precisely cooled in a 21-hour process, during which BP crystals should form. After …


Investigating Tantalum As A Plasma-Facing Component For Nuclear Fusion Reactors, Arvind Sundaram, Jitendra K. Tripathi, Theodore J. Novakowski, Ahmed Hassanein Ph. D. Aug 2017

Investigating Tantalum As A Plasma-Facing Component For Nuclear Fusion Reactors, Arvind Sundaram, Jitendra K. Tripathi, Theodore J. Novakowski, Ahmed Hassanein Ph. D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nuclear fusion is a potential source for producing unlimited environment-friendly energy. Tungsten (W) is selected as the primary candidate material for plasma facing component in nuclear fusion reactors due to its high melting temperature (3695 K), low sputtering erosion yield and strong mechanical properties. However, recent investigations on W have confirmed that it undergoes severe surface morphology changes during low energy He plasma and/or ion irradiation similar to a harsh fusion environment. Additionally, our previous studies indicate that tantalum (Ta) may show better resistance to the harsh radiation environment and is therefore worthy of investigation. Hydrogen retention properties, specifically deuterium …


Effect Of Particle Interactions On Powder Flow Behavior, Ivana A. Penagos, Carolina P. Mora, Teresa Carvajal Aug 2017

Effect Of Particle Interactions On Powder Flow Behavior, Ivana A. Penagos, Carolina P. Mora, Teresa Carvajal

The Summer Undergraduate Research Fellowship (SURF) Symposium

The study of powder flow behavior is essential for the development of processing technologies in many industries. In fact, powders have a major function in diverse types of manufacturing, such as pharmaceuticals, foods, chemicals, materials, minerals and cosmetics. This leads to an increasing demand for the development of reliable methods to assess powder flow problems in industry. This research intends to provide a general insight into how surface interactions and particle properties may alter powder flowability. The materials used for this study were lactose, starch, milk powder, cocoa and chocolate. These vary in their interparticle forces as well as on …


Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan Aug 2017

Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

As transistors get smaller, we are achieving record levels of memory density. However, there is a limit to how small transistors can be made before their functionality breaks down. Thus alternatives to traditional transistor technology are needed. The two such technologies we examined are: resistance switching devices, which reversibly grow metal filaments through a dielectric, and two-dimensional transistors, which are capable of breaking through the scalability limit of traditional transistors. In order to design resistance switching devices which create filaments with some level of consistency, the dynamics of the filament formation need to be explored. Herein we model this process …


Cylindrical Shell Based Phase Transforming Cellular Materials: Designing A Recoverable Energy Dissipating Material, Gordon F. Jarrold, David Restrepo, Nilesh Mankame, Pablo Zavattieri Aug 2017

Cylindrical Shell Based Phase Transforming Cellular Materials: Designing A Recoverable Energy Dissipating Material, Gordon F. Jarrold, David Restrepo, Nilesh Mankame, Pablo Zavattieri

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energy dissipating materials are used in a variety of impact events to protect more important parts of a system; one example of this is a football player’s helmet protecting a brain. A major drawback to classic energy dissipating materials however is that they dissipate energy through plastic deformation, meaning that after a single use, permanent deformations will prevent the material from being reusable to the same capacity as initially. We have designed a 1D cellular material in which geometric phase transformations in cylindrical shell elements are the primary energy dissipating mechanism, allowing for recoverability after use while keeping high energy …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …


Core-Shell Copper And Nickel Nanofoam: Uniform Electroplating And Properties, Hassan Zbib, David Bahr Aug 2017

Core-Shell Copper And Nickel Nanofoam: Uniform Electroplating And Properties, Hassan Zbib, David Bahr

The Summer Undergraduate Research Fellowship (SURF) Symposium

Characterizing materials on the nanoscale is a key factor to enhance nanotechnology in diverse applications, ranging from electronics to energy fields. However, controlling the structure of the material at the nanoscale or mimicking the nanoscale features of a structure that already exists requires linking processing conditions to the nanostructure. This work focuses on solids that show porous patterns at the nano-micro scale; these are often called cellular solids and classified into two categories: honeycombs and foams. This study focuses on nanofoams; with ligament dimensions in the sub-micron scale. Electrospinning has been developed to produce nanofoam structures of polymers with controlled …


Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan Aug 2017

Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Atomistic and molecular simulations have become an important research field due to the progress made in computer performance and the necessity of new and improved materials. Despite this, first principle simulations of large molecules are still not possible because the high computational time and resources required. Other methods, such as molecular dynamics, allow the simplification of calculations by defining energy terms to describe multiple atom interactions without compromising accuracy significantly. A group of these energy terms is called a force field, and each force field has its own descriptions and parameters. The objective of this project was to develop a …


Study Of Persistent Slip Bands Formed By Low Cycle Fatigue On Nickel-Based Superalloys At Room Temperature, Anjola Uprety, Sae Matsunaga, Michael S. Titus Dr., Michael D. Sangid Dr., Alberto W. Mello Dr. Aug 2017

Study Of Persistent Slip Bands Formed By Low Cycle Fatigue On Nickel-Based Superalloys At Room Temperature, Anjola Uprety, Sae Matsunaga, Michael S. Titus Dr., Michael D. Sangid Dr., Alberto W. Mello Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

The ability of Ni-based superalloys to withstand temperatures in excess of 11000C makes them useful for applications in the hottest components in jet engines, gas turbines, and thrust engines. Increasing the efficiency of these gas turbine engines helps to reduce the fossil fuel consumption and the production of greenhouse gasses. A common mode of failure in these Ni-based superalloys is low cycle fatigue, in which narrow regions of high dislocation density, which are known as persistent slip bands (PSBs), can develop and lead to crack initiation. A detailed understanding of the formation and structure of PSBs has eluded …


Understanding Photovoltaic Properties Of Pbs Quantum Dot Solids Via Solution Contacting, Vitalii Dereviankin, Erik Johansson May 2017

Understanding Photovoltaic Properties Of Pbs Quantum Dot Solids Via Solution Contacting, Vitalii Dereviankin, Erik Johansson

Student Research Symposium

Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photontoelectron conversion yields. However, record power conversion efficiency remain low, in part due to small photovoltages, which in turn are affected by both bulk and interfacial defects. Their relative impacts on limiting the photovoltaic performance of QD solids are not known. Interfacial defects can be formed when contacting a semiconductor and may dominate the semiconductor/metal or metaloxide junction properties. The objective of this study is to explore whether electrochemical contacting using liquid electrolytes provides means of contacting QD solids without introducing interfacial defects. We have initially focused on …


Dual Mechanism For Toughening And Sustained Aminoglycoside Elution From A Polyphosphate Hydrogel, Dwight D. Lane, Russell J. Stewart Phd Feb 2017

Dual Mechanism For Toughening And Sustained Aminoglycoside Elution From A Polyphosphate Hydrogel, Dwight D. Lane, Russell J. Stewart Phd

Biomedical Engineering Western Regional Conference

No abstract provided.


Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden Feb 2017

Redesign Of Computer Keyboards For Hospital And Consumer Use, Kent Williams, Brian Jensen, Anton Bowden

Biomedical Engineering Western Regional Conference

Application of carbon nanotube coatings to computer keyboards in order to reduce the spread of bacteria in hospitals and homes.

Keywords: carbon nanotube, bacteria, antimicrobial, keyboard, design, MRSA, biofilm


Computational Studies Of Grain Boundary Behavior In Uranium Dioxide Nuclear Fuels, Eric Nelson, Lan Li (Mentor), Simon C. Middleburgh (Mentor) Jan 2017

Computational Studies Of Grain Boundary Behavior In Uranium Dioxide Nuclear Fuels, Eric Nelson, Lan Li (Mentor), Simon C. Middleburgh (Mentor)

Idaho Conference on Undergraduate Research

Nuclear power is responsible for the production of 380,000 Megawatts of energy worldwide, which results in over 11% of the world’s energy production [world-nuclear.org]. Pellet-cladding interactions (PCI) are a key nuclear fuel failure mechanism which presents formidable challenges to researchers due to extreme nuclear fission conditions. Although PCI interactions have been reduced due to fuel additives, understandings of PCI interactions remain elusive. We propose new approaches to increase understanding of nuclear fuel interactions; specifically, uranium dioxide and the effects of dopants. This study focuses on amorphous uranium dioxide and fission products, while benchmarking new methods with previous computational studies. Results …


Cermet Development For High Temperature And High Pressure Applications, Beatriz Justus Ferez, Samantha Guthrie, Brian J. Jaques (Mentor), Darryl P. Butt (Mentor) Jan 2017

Cermet Development For High Temperature And High Pressure Applications, Beatriz Justus Ferez, Samantha Guthrie, Brian J. Jaques (Mentor), Darryl P. Butt (Mentor)

Idaho Conference on Undergraduate Research

Many traditionally used low cost alloys are easily corroded in steam or supercritical CO2. An effective solution is to utilize ceramic heat exchangers that are often integrated with metallic components which result in a significant thermal expansion mismatch. The goal of this project is to develop a sealing method to create a hermetic joint between the ceramic and metal alloy. Proposed is a seal ring containing a cermet powder with a coefficient of thermal expansion (CTE) higher than the ceramic and metal to produce a high temperature compressive seal. Cermets of Ag and MgO have been selected to …


Verifying The Implementation Of An Anisotropic Grain Boundary Energy Model In Idaho National Lab’S Marmot, John-Michael H. Bradley, Evan D. Hansen, Jarin C. French, Yongfeng Zhang (Mentor) Jan 2017

Verifying The Implementation Of An Anisotropic Grain Boundary Energy Model In Idaho National Lab’S Marmot, John-Michael H. Bradley, Evan D. Hansen, Jarin C. French, Yongfeng Zhang (Mentor)

Idaho Conference on Undergraduate Research

This work aims to verify the correct implementation of an anisotropic grain boundary (GB) energy model for face-centered cubic (FCC) and fluorite materials in Idaho National Laboratory’s phase field fuel performance code MARMOT. The model was recently implemented in MARMOT with the purpose of enabling higher fidelity simulations of UO2 nuclear fuels. As part of verification, tests were performed to measure the energy dependence on misorientation of high symmetry GBs in an FCC metal (Cu). The energies of the [100], [110], and [111] twist boundaries result as predicted, as do the energies of the [111] symmetric tilt boundaries. However, …